Lefschetz property, Schur-Weyl duality and a q-deformation of Specht polynomial

被引:3
|
作者
Maeno, Toshiaki [1 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Sakyo Ku, Kyoto 6068501, Japan
关键词
Schur-Weyl duality; Specht polynomial; Q-ANALOG; ALGEBRAS;
D O I
10.1080/00927870601142371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the Schur-Weyl duality for a polynomial representation of the quantum group and the Hecke algebra of type A from a viewpoint of a q-analog of the strong Lefschetz property. A q-deformation of the Specht polynomial appears as a constituent of bases for irreducible components.
引用
收藏
页码:1307 / 1321
页数:15
相关论文
共 38 条
  • [1] Polynomial representations of GL(n) and Schur-Weyl duality
    Krause, Henning
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2015, 56 (02): : 769 - 773
  • [2] Schur-Weyl duality and categorification
    Brundan, Jonathan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 51 - 70
  • [3] Affine Quantum Super Schur-Weyl Duality
    Flicker, Yuval Z.
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (01) : 135 - 167
  • [4] Schur-Weyl duality for higher levels
    Brundan, Jonathan
    Kleshchev, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01): : 1 - 57
  • [5] A New Generalized Schur-Weyl Duality
    Lei, Qiang
    Yu, Haijiang
    Wu, Junde
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 4034 - 4040
  • [6] A New Generalized Schur-Weyl Duality
    Qiang Lei
    Haijiang Yu
    Junde Wu
    International Journal of Theoretical Physics, 2015, 54 : 4034 - 4040
  • [7] Quantum Schur-Weyl duality and projected canonical bases
    Blasiak, Jonah
    JOURNAL OF ALGEBRA, 2014, 402 : 499 - 532
  • [8] Quantized mixed tensor space and Schur-Weyl duality
    Dipper, Richard
    Doty, Stephen
    Stoll, Friederike
    ALGEBRA & NUMBER THEORY, 2013, 7 (05) : 1121 - 1146
  • [9] Connecting the McKay correspondence and Schur-Weyl duality
    Benkart, Georgia
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 933 - 656
  • [10] A Schur-Weyl Duality Approach toWalking on Cubes
    Benkart, Georgia
    Moon, Dongho
    ANNALS OF COMBINATORICS, 2016, 20 (03) : 397 - 417