The on-line multiprocessor scheduling problem with known sum of the tasks

被引:22
作者
Angelelli, E
Nagy, AB
Speranza, MG
Tuza, Z
机构
[1] Univ Brescia, Dept Quantitat Methods, I-25122 Brescia, Italy
[2] Univ Veszprem, Dept Comp Sci, Veszprem, Hungary
[3] Hungarian Acad Sci, Inst Comp & Automat, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
on-line scheduling; parallel processors; competitive analysis;
D O I
10.1023/B:JOSH.0000046074.03560.5d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we investigate a semi on-line multiprocessor scheduling problem. The problem is the classical on-line multiprocessor problem where the total sum of the tasks is known in advance. We show an asymptotic lower bound on the performance ratio of any algorithm (as the number of processors gets large), and present an algorithm which has performance ratio at most root6+1/2<1.725 for any number of processors. When compared with known general lower bounds, this result indicates that the information on the sum of tasks substantially improves the performance ratio of on-line algorithms.
引用
收藏
页码:421 / 428
页数:8
相关论文
共 11 条
  • [1] Better bounds for online scheduling
    Albers, S
    [J]. SIAM JOURNAL ON COMPUTING, 1999, 29 (02) : 459 - 473
  • [2] Semi-on-line scheduling on two parallel processors with an upper bound on the items
    Angelelli, E
    Speranza, MG
    Tuza, Z
    [J]. ALGORITHMICA, 2003, 37 (04) : 243 - 262
  • [3] Angelelli E., 2000, CEJOR CENT EUR J OPE, V8, P285
  • [4] ANGELELLI E, UNPUB SEMI ON LINE S
  • [5] On-line bin-stretching
    Azar, Y
    Regev, O
    [J]. THEORETICAL COMPUTER SCIENCE, 2001, 268 (01) : 17 - 41
  • [6] Faigle U., 1989, Acta Cybernetica, V9, P107
  • [7] Fleischer R., 2000, Journal of Scheduling, V3, P343, DOI 10.1002/1099-1425(200011/12)3:6<343::AID-JOS54>3.0.CO
  • [8] 2-2
  • [9] GIRLICH E, 1998, 9805 U MAGD MATH DEP
  • [10] Semi on-line scheduling on two identical machines
    He, Y
    Zhang, G
    [J]. COMPUTING, 1999, 62 (03) : 179 - 187