Bifurcation, bimodality, and finite variance in confined Levy flights

被引:133
作者
Chechkin, AV
Klafter, J
Gonchar, VY
Metzler, R
Tanatarov, LV
机构
[1] Inst Theoret Phys NSC KIPT, UA-61108 Kharkov, Ukraine
[2] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[3] NORDITA, DK-2100 Copenhagen O, Denmark
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 01期
关键词
FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevE.67.010102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the statistical behavior of Levy flights confined in a symmetric, quartic potential well U(x)proportional tox(4). At stationarity, the probability density function features a distinct bimodal shape and decays with power-law tails which are steep enough to give rise to a finite variance, in contrast to free Levy flights. From a delta-initial condition, a bifurcation of the unimodal state is observed at t(c)>0. The nonlinear oscillator with potential U(x)=ax(2)/2+bx(4)/4, a,b>0, shows a crossover from unimodal to bimodal behavior at stationarity, depending on the ratio a/b.
引用
收藏
页数:4
相关论文
共 29 条
[1]  
[Anonymous], 1995, RANDOM WALKS
[2]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[3]   Linear relaxation processes governed by fractional symmetric kinetic equations [J].
Chechkin, AV ;
Gonchar, VY .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (03) :635-651
[4]   LEVY FLIGHTS IN RANDOM-ENVIRONMENTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2517-2520
[5]   Robust parameter estimation of a deterministic signal in impulsive noise [J].
Friedmann, J ;
Messer, H ;
Cardoso, JF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (04) :935-942
[6]  
Gorenflo R., 1997, FRACTALS FRACTIONAL
[7]  
Hardy GH., 1949, DIVERGENT SERIES
[8]   Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions [J].
Jespersen, S ;
Metzler, R ;
Fogedby, HC .
PHYSICAL REVIEW E, 1999, 59 (03) :2736-2745
[9]  
Kamke E., 1959, Differentialgleichungen. Losungsmethoden und Losungen
[10]   Beyond Brownian motion [J].
Klafter, J ;
Shlesinger, MF ;
Zumofen, G .
PHYSICS TODAY, 1996, 49 (02) :33-39