New biomarkers and genes for prediction of type 2 diabetes

被引:1
作者
Herder, C. [1 ,2 ]
Illig, T. [3 ]
机构
[1] Univ Dusseldorf, Leibniz Zentrum Diabetesforsch, Deutsch Diabet Zentrum, Inst Klin Diabetol, D-40225 Dusseldorf, Germany
[2] Partner Dusseldorf, Deutsch Zentrum Diabet Forsch DZD eV, Dusseldorf, Germany
[3] Hannover Med Sch, Hannover Unified Biobank, Hannover, Germany
来源
DIABETOLOGE | 2014年 / 10卷 / 07期
关键词
Genetics; Genome-wide association study; Metabolomics; Amino acids; Lipids; INSULIN-RESISTANCE; RISK; METABOLOMICS; SUSCEPTIBILITY; ARCHITECTURE; INDIVIDUALS; ASSOCIATION; VARIANTS;
D O I
10.1007/s11428-014-1211-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Type 2 diabetes is a multifactorial disease caused by non-genetic and genetic risk factors. Current prediction models use mostly non-genetic factors, such as age, overweight, obesity and lifestyle factors, which result in a moderate or good prediction of the individual diabetes risk. This review provides an update on the question to what extent gene variants and metabolites, which are currently the best measurable biomarkers under the new "omics" technologies, can be used to improve risk prediction. Since 2008 microarray-based genome-wide association studies have led to substantially deeper insights into the genetic architecture of type 2 diabetes. This knowledge has improved the understanding of the pathophysiology leading to type 2 diabetes, whereas the predictive value of the novel genetic biomarkers remains fairly low. Metabolomic studies analyze circulating metabolites, such as amino acids and lipids in blood. The predictive value of these metabolites seems to be higher than that of genetic variants. Further large scale studies including whole-genome sequencing will help to obtain a better understanding of the genetic susceptibility for type 2 diabetes. Subsequently, data from different "omics" studies (i.e. genomics, epigenomics, transcriptomics, proteomics and metabolomics) need to be integrated to characterize novel pathogenetic mechanisms and to identify patterns of biomarkers which predict type 2 diabetes better than currently available gene variants and metabolites.
引用
收藏
页码:566 / 571
页数:6
相关论文
共 31 条
  • [1] [Anonymous], 2013, IDF DIABETES ATLAS
  • [2] Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases
    Aschard, Hugues
    Chen, Jinbo
    Cornelis, Marilyn C.
    Chibnik, Lori B.
    Karlson, Elizabeth W.
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (06) : 962 - 972
  • [3] Evidence of different metabolic phenotypes in humans
    Assfalg, Michael
    Bertini, Ivano
    Colangiuli, Donato
    Luchinat, Claudio
    Schaefer, Hartmut
    Schuetz, Birk
    Spraul, Manfred
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) : 1420 - 1424
  • [4] Metabolomics Applied to Diabetes Research Moving From Information to Knowledge
    Bain, James R.
    Stevens, Robert D.
    Wenner, Brett R.
    Ilkayeva, Olga
    Muoio, Deborah M.
    Newgard, Christopher B.
    [J]. DIABETES, 2009, 58 (11) : 2429 - 2443
  • [5] Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes
    Buijsse, Brian
    Simmons, Rebecca K.
    Griffin, Simon J.
    Schulze, Matthias B.
    [J]. EPIDEMIOLOGIC REVIEWS, 2011, 33 (01) : 46 - 62
  • [6] Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity
    Dimas, Antigone S.
    Lagou, Vasiliki
    Barker, Adam
    Knowles, Joshua W.
    Maegi, Reedik
    Hivert, Marie-France
    Benazzo, Andrea
    Rybin, Denis
    Jackson, Anne U.
    Stringham, Heather M.
    Song, Ci
    Fischer-Rosinsky, Antje
    Boesgaard, Trine Wellov
    Grarup, Niels
    Abbasi, Fahim A.
    Assimes, Themistocles L.
    Hao, Ke
    Yang, Xia
    Lecoeur, Cecile
    Barroso, Ines
    Bonnycastle, Lori L.
    Boettcher, Yvonne
    Bumpstead, Suzannah
    Chines, Peter S.
    Erdos, Michael R.
    Graessler, Jurgen
    Kovacs, Peter
    Morken, Mario A.
    Narisu, Narisu
    Payne, Felicity
    Stancakova, Alena
    Swift, Amy J.
    Toenjes, Anke
    Bornstein, Stefan R.
    Cauchi, Stephane
    Froguel, Philippe
    Meyre, David
    Schwarz, Peter E. H.
    Haering, Hans-Ulrich
    Smith, Ulf
    Boehnke, Michael
    Bergman, Richard N.
    Collins, Francis S.
    Mohlke, Karen L.
    Tuomilehto, Jaakko
    Quertemous, Thomas
    Lind, Lars
    Hansen, Torben
    Pedersen, Oluf
    Walker, Mark
    [J]. DIABETES, 2014, 63 (06) : 2158 - 2171
  • [7] Metabolomics - the link between genotypes and phenotypes
    Fiehn, O
    [J]. PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) : 155 - 171
  • [8] Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach
    Floegel, Anna
    Stefan, Norbert
    Yu, Zhonghao
    Muehlenbruch, Kristin
    Drogan, Dagmar
    Joost, Hans-Georg
    Fritsche, Andreas
    Haering, Hans-Ulrich
    de Angelis, Martin Hrabe
    Peters, Annette
    Roden, Michael
    Prehn, Cornelia
    Wang-Sattler, Rui
    Illig, Thomas
    Schulze, Matthias B.
    Adamski, Jerzy
    Boeing, Heiner
    Pischon, Tobias
    [J]. DIABETES, 2013, 62 (02) : 639 - 648
  • [9] Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond
    Grarup, Niels
    Sandholt, Camilla H.
    Hansen, Torben
    Pedersen, Oluf
    [J]. DIABETOLOGIA, 2014, 57 (08) : 1528 - 1541
  • [10] The potential of novel biomarkers to improve risk prediction of type 2 diabetes
    Herder, Christian
    Kowall, Bernd
    Tabak, Adam G.
    Rathmann, Wolfgang
    [J]. DIABETOLOGIA, 2014, 57 (01) : 16 - 29