Embedding Euclidean Lie algebras into quantum structure

被引:3
作者
Moylan, P [1 ]
机构
[1] Penn State Univ, Dept Phys, Abington, PA 19001 USA
关键词
D O I
10.1023/A:1022829700566
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that it is possible to express the basis elements of the Lie algebra of the Euclidean group, E(2), as simple irrational functions of certain q deformed expressions involving the generators of the quantum algebra U-q(so(2,1)). We consider implications of these results for the representation theory of the Lie algebra of E(2). We briefly discuss analogous results for U-q(so(2,2)).
引用
收藏
页码:1251 / 1258
页数:8
相关论文
共 8 条
  • [1] BOZEK P, 1985, NCTF1 U CAR PROG
  • [2] CANONICAL Q-DEFORMATIONS OF NONCOMPACT LIE (SUPER-)ALGEBRAS
    DOBREV, VK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06): : 1317 - 1334
  • [3] AN EMBEDDING OF THE POINCARE LIE-ALGEBRA INTO AN EXTENSION OF THE LIE FIELD OF SO0(1,4)
    HAVLICEK, M
    MOYLAN, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 5320 - 5332
  • [4] HAVLICEK M, 1996, IN PRESS P 22 INT C
  • [5] JACOBSEN N, 1978, LIE ALGEBRAS
  • [6] KLIMYK AU, 1991, SYMMETRIES SCI
  • [7] SMIRNOV YF, 1991, YAD FIZ, V53, P959
  • [8] STOVICEK P, 1988, J MATH PHYS, V29, P5320