Disease Prediction: Smart Disease Prediction System using Random Forest Algorithm

被引:6
|
作者
Swarupa, A. N. V. K. [1 ]
Sree, V. Heina [1 ]
Nookambika, S. [1 ]
Kishore, Y. Kiran Sai [1 ]
Teja, U. Ravi [1 ]
机构
[1] Sasi Inst Tech & Engn, Dept Comp Sci & Engg, Tadepalligudem, AP, India
来源
2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, SMART AND GREEN TECHNOLOGIES (ICISSGT 2021) | 2021年
关键词
random forest; disease prediction; HEALTH;
D O I
10.1109/ICISSGT52025.2021.00021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
People nowadays suffer from a variety of diseases as a result of their living habits and the state of the environment. As a result, predicting sickness at an early stage becomes a crucial task. A doctor's ability to establish accurate diagnosis solely on symptoms, on the other hand, is restricted. For the prevention and treatment of illness, an accurate and timely examination of any health-related problem is critical and challenging. In the case of a critical illness, the conventional method of diagnosis may not be adequate. There will be a huge requirement for Automated Disease Prediction System that will reduce these challenges. Developing a medical diagnosis system based on the Random Forest machine learning algorithm for disease prediction can aid in a more accurate diagnosis than the conventional way. The goal of constructing a classification system using a machine learning algorithm i.e Random Forest will substantially enable physicians in anticipating and detecting diseases at an early stage, greatly assisting in the resolution of health-related issues. For the analysis, a sample of 4920 patient records with 41 disorders was chosen. A total of 41 diseases made up the dependent variable. We enhanced 95 of the 132 independent variables (symptoms) that are closely related to illnesses. This paper illustrates a disease prediction system constructed using the Random Forest Machine Learning algorithm. Experiments were conducted with a standard symptoms dataset, and this model achieved 95 % classification accuracy. Machine learning and the Python programming language with the Tkinter Interface were used to create this disease prediction using Random Forest.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [1] Heart Disease Prediction Using Random Forest Algorithm
    Vasanthi, R.
    Tamilselvi, J.
    CARDIOMETRY, 2022, (24): : 982 - 988
  • [2] Heart Disease Prediction System Using Random Forest
    Singh, Yeshvendra K.
    Sinha, Nikhil
    Singh, Sanjay K.
    ADVANCES IN COMPUTING AND DATA SCIENCES, ICACDS 2016, 2017, 721 : 613 - 623
  • [3] A Real Time Patient Monitoring System for Heart Disease Prediction Using Random Forest Algorithm
    Sreejith, S.
    Rahul, S.
    Jisha, R. C.
    ADVANCES IN SIGNAL PROCESSING AND INTELLIGENT RECOGNITION SYSTEMS (SIRS-2015), 2016, 425 : 485 - 500
  • [4] Multi Chronic Disease Prediction System Using CNN and Random Forest
    Chunduru A.
    Kishore A.R.
    Sasapu B.K.
    Seepana K.
    SN Computer Science, 5 (1)
  • [5] Osteoarthritis Disease Prediction Based on Random Forest
    Aprilliani, Ulfah
    Rustam, Zuherman
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 237 - 240
  • [6] Metabolite-Disease Association Prediction Algorithm Combining DeepWalk and Random Forest
    Tie, Jiaojiao
    Lei, Xiujuan
    Pan, Yi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (01) : 58 - 67
  • [7] Metabolite-Disease Association Prediction Algorithm Combining DeepWalk and Random Forest
    Jiaojiao Tie
    Xiujuan Lei
    Yi Pan
    TsinghuaScienceandTechnology, 2022, 27 (01) : 58 - 67
  • [8] Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
    El Hamdaoui, Halima
    Boujraf, Said
    Chaoui, Nour El Houda
    Alami, Badreddine
    Maaroufi, Mustapha
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (11) : 60 - 75
  • [9] An Effective Chronic Disease Prediction using Multi-Objective Firefly Optimisation Random Forest Algorithm
    Priya, S. Kavi
    Saranya, N.
    IETE JOURNAL OF RESEARCH, 2024, 70 (01) : 307 - 321
  • [10] Software Defect Prediction Using Random Forest Algorithm
    Soe, Yan Naung
    Santosa, Paulus Insap
    Hartanto, Rudy
    2018 12TH SOUTH EAST ASIAN TECHNICAL UNIVERSITY CONSORTIUM (SYMPOSIUM SEATUC 2018): ENGINEERING EDUCATION AND RESEARCH FOR SUSTAINABLE DEVELOPMENT, 2018,