Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO

被引:1
作者
Shen, Shujin [1 ]
Han, Cheng [1 ]
Wang, Bing [1 ]
Wang, Yingde [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Adv Ceram Fibers & Composites Lab, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
single-atom catalysts; carbon dioxide reduction; electrocatalysis; HIGH-PERFORMANCE; CATALYSTS; SITES; ELECTROREDUCTION; BULK; NANOPARTICLES; OPPORTUNITIES; CHALLENGES; CONVERSION;
D O I
10.7536/PC210352
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic carbon dioxide reduction (ECR) technology offers a potential strategy to achieve the goal of "carbon neutralization". Transition metal single-atom catalysts have attracted much attention in ECR due to their adjustable electronic structure, high atom utilization and uniform active sites. This review firstly introduces the advantages of transition metal single-atom catalysts in CO2 reduction, especially in selective CO production. Then, the recent progress on controlling the active sites as well as the catalysis selectivity over Fe, Co, Ni and other single-atom electrocatalysts are reviewed, with special emphasis on the intermediate process control of proton coupled CO2 reduction to CO reaction path. Finally , the development direction of transition metal single-atom catalysts in ECR is briefly prospected to provide guidance and reference for promoting their large-scale application.
引用
收藏
页码:533 / 546
页数:14
相关论文
共 99 条
[61]   Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction [J].
Tuo, Jinqin ;
Lin, Yunxiang ;
Zhu, Yihua ;
Jiang, Hongliang ;
Li, Yuhang ;
Cheng, Ling ;
Pang, Ruichao ;
Shen, Jianhua ;
Song, Li ;
Li, Chunzhong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272
[62]   Quasi-atomic-scale platinum anchored on porous titanium nitride nanorod arrays for highly efficient hydrogen evolution [J].
Wang, Chunhua ;
Shi, Huimin ;
Liu, Huaizhi ;
Fu, Jiecai ;
Wei, Donghai ;
Zeng, Wei ;
Wan, Qiang ;
Zhang, Guanhua ;
Duan, Huigao .
ELECTROCHIMICA ACTA, 2018, 292 :727-735
[63]   Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential [J].
Wang, Fuhuan ;
Xie, Heping ;
Liu, Tao ;
Wu, Yifan ;
Chen, Bin .
APPLIED ENERGY, 2020, 269
[64]   Self-Selective Catalyst Synthesis for CO2 Reduction [J].
Wang, Hongxia ;
Liang, Zheng ;
Tang, Michael ;
Chen, Guangxu ;
Li, Yanbin ;
Chen, Wei ;
Lin, Dingchang ;
Zhang, Zewen ;
Zhou, Guangmin ;
Li, Jun ;
Lu, Zhiyi ;
Chan, Karen ;
Tan, Tianwei ;
Cui, Yi .
JOULE, 2019, 3 (08) :1927-1936
[65]   Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn-CO2 Batteries [J].
Wang, Tingting ;
Sang, Xiahan ;
Zheng, Wanzhen ;
Yang, Bin ;
Yao, Siyu ;
Lei, Chaojun ;
Li, Zhongjian ;
He, Qinggang ;
Lu, Jianguo ;
Lei, Lecheng ;
Dai, Liming ;
Hou, Yang .
ADVANCED MATERIALS, 2020, 32 (29)
[66]   Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2 [J].
Wang, Xiaoqian ;
Chen, Zhao ;
Zhao, Xuyan ;
Yao, Tao ;
Chen, Wenxing ;
You, Rui ;
Zhao, Changming ;
Wu, Geng ;
Wang, Jing ;
Huang, Weixin ;
Yang, Jinlong ;
Hong, Xun ;
Wei, Shiqiang ;
Wu, Yuen ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1944-1948
[67]  
Wang Y., 2018, H CHEM REV, V119, P1806
[68]   Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction [J].
Wang, Yuchao ;
Liu, Yi ;
Liu, Wei ;
Wu, Jiao ;
Li, Qian ;
Feng, Qingguo ;
Chen, Zhiyan ;
Xiong, Xiang ;
Wang, Dingsheng ;
Lei, Yongpeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :4609-4624
[69]   Zinc Imidazolate Metal-Organic Frameworks (ZIF-8) for Electrochemical Reduction of CO2 to CO [J].
Wang, Yulin ;
Hou, Pengfei ;
Wang, Zhuo ;
Kang, Peng .
CHEMPHYSCHEM, 2017, 18 (22) :3142-3147
[70]   CO2 Reduction: From the Electrochemical to Photochemical Approach [J].
Wu, Jinghua ;
Huang, Yang ;
Ye, Wen ;
Li, Yanguang .
ADVANCED SCIENCE, 2017, 4 (11)