Synchronized Motion Profiles for Inverse-Dynamics-Based Online Control of Three Inextensible Segments of Trunk-Type Robot Actuators

被引:2
作者
Matukaitis, Mindaugas [1 ]
Urniezius, Renaldas [1 ,2 ]
Masaitis, Deividas [1 ,2 ]
Zlatkus, Lukas [1 ]
Kemesis, Benas [1 ,2 ]
Dervinis, Gintaras [1 ]
机构
[1] Kaunas Univ Technol, Dept Automat, LT-51367 Kaunas, Lithuania
[2] Cumulatis, LT-53331 Ringaudai, Kaunas County, Lithuania
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 07期
关键词
inverse dynamics; inextensible segments; online control; synchronized motion profiles; trunk-type robot; MAXIMUM RELATIVE ENTROPY; CONTINUUM; DESIGN; KINEMATICS; MECHANICS; SYSTEM;
D O I
10.3390/app11072946
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study proposes a novel method for the positioning and spatial orientation control of three inextensible segments of trunk-type robots. The suggested algorithm imposes a soft constraint assumption for the end-effector's endpoint and a mandatory constraint on its direction. Simultaneously, the algorithm by-design enforces nonholonomic features on the robot segments in the form of arcs. An approximate robot spine curve is the key to the final robot state configuration based on the given conditions. The numeric simulation showed acceptable (less than 1 s) performance for single-core processing tasks. The parametric method finds the best proximate robot state solution and represents the gray box model in addition to existing learning or black-box inverse dynamics approaches. This study also shows that a multiple inverse kinematics answer constructs a single inverse dynamics solution that defines the robot actuators' motion profiles, synchronized in time. Finally, this text presents rotational expressions and their outlines for controlling the manipulator's tendons.
引用
收藏
页数:28
相关论文
共 42 条
[1]  
Abbena E., 2006, Modern Differential Geometry of Curves and Surfaces with Mathematica, V3rd
[2]  
Amouri A, 2020, INT J ENG TECHNOL IN, V10, P60
[3]  
Augustaitis A., 2020, IJRA, V9, P113, DOI [10.11591/ijra.v9i2.pp113-122, DOI 10.11591/IJRA.V9I2.PP113-122]
[4]   Mechanics Modeling of Tendon-Driven Continuum Manipulators [J].
Camarillo, David B. ;
Milne, Christopher F. ;
Carlson, Chfistopher R. ;
Zinn, Michael R. ;
Salisbury, J. Kenneth .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (06) :1262-1273
[5]  
Cohen D., 2005, PRECALCULUS PROBLEMS, V6th
[6]   Design and Preliminary Testing of a Continuum Assistive Robotic Manipulator [J].
Coulson, Ryan ;
Robinson, Megan ;
Kirkpatrick, Max ;
Berg, Devin R. .
ROBOTICS, 2019, 8 (04)
[7]  
Domenech D.M., 2016, NEW TECHNOLOGIES EME
[8]   Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines [J].
Dong, X. ;
Axinte, D. ;
Palmer, D. ;
Cobos, S. ;
Raffles, M. ;
Rabani, A. ;
Kell, J. .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2017, 44 :218-229
[9]   Developing a Kinematically Similar Master Device for Extensible Continuum Robot Manipulators [J].
Frazelle, Chase G. ;
Kapadia, Apoorva ;
Walker, Ian .
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2018, 10 (02)
[10]   Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities [J].
Garriga-Casanovas, Arnau ;
Rodriguez y Baena, Ferdinando .
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2019, 11 (01)