High-resolution Observations of Flares in an Arch Filament System

被引:19
作者
Su, Yingna [1 ,2 ]
Liu, Rui [3 ,4 ]
Li, Shangwei [1 ,5 ]
Cao, Wenda [6 ,7 ]
Ahn, Kwangsu [6 ]
Ji, Haisheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, Key Lab DMSA, Nanjing 210008, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[4] Collaborat Innovat Ctr Astronaut Sci & Technol, Hefei 230026, Anhui, Peoples R China
[5] Univ CAS, Beijing 100049, Peoples R China
[6] New Jersey Inst Technol, Big Bear Solar Observ, 40386 North Shore Lane, Big Bear City, CA 92314 USA
[7] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Sun: chromosphere; Sun: corona; Sun: evolution; Sun:; filaments; prominences; Sun: flares; Sun: magnetic fields; MAGNETIC-FIELDS; SOLAR CORONA; RECONNECTION; DYNAMICS; EMERGENCE; CHANNELS; SURGES; REGION; MODEL; FLUX;
D O I
10.3847/1538-4357/aaac31
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the Big Bear Solar Observatory, complemented by Interface Region Imaging Spectrograph and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semicircular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL's footprint. Moreover, magnetic field lines traced along the semicircular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.
引用
收藏
页数:13
相关论文
共 56 条
  • [1] RIGOROUS NEW LIMITS ON MAGNETIC HELICITY DISSIPATION IN THE SOLAR CORONA
    BERGER, MA
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1984, 30 (1-2) : 79 - 104
  • [2] The writhe of open and closed curves
    Berger, Mitchell A.
    Prior, Chris
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8321 - 8348
  • [3] Modeling nonpotential magnetic fields in solar active regions
    Bobra, M. G.
    van Ballegooijen, A. A.
    DeLuca, E. E.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 672 (02) : 1209 - 1220
  • [4] Bruzek A., 1967, Sol. Phys., V2, P451, DOI DOI 10.1007/BF00146493
  • [5] Cao W, 2012, ASTR SOC P, V463, P291
  • [6] Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear
    Cao, W.
    Gorceix, N.
    Coulter, R.
    Ahn, K.
    Rimmele, T. R.
    Goode, P. R.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2010, 331 (06) : 636 - 639
  • [7] Energy release in the solar corona from spatially resolved magnetic braids
    Cirtain, J. W.
    Golub, L.
    Winebarger, A. R.
    De Pontieu, B.
    Kobayashi, K.
    Moore, R. L.
    Walsh, R. W.
    Korreck, K. E.
    Weber, M.
    McCauley, P.
    Title, A.
    Kuzin, S.
    DeForest, C. E.
    [J]. NATURE, 2013, 493 (7433) : 501 - 503
  • [8] The Interface Region Imaging Spectrograph (IRIS)
    De Pontieu, B.
    Title, A. M.
    Lemen, J. R.
    Kushner, G. D.
    Akin, D. J.
    Allard, B.
    Berger, T.
    Boerner, P.
    Cheung, M.
    Chou, C.
    Drake, J. F.
    Duncan, D. W.
    Freeland, S.
    Heyman, G. F.
    Hoffman, C.
    Hurlburt, N. E.
    Lindgren, R. W.
    Mathur, D.
    Rehse, R.
    Sabolish, D.
    Seguin, R.
    Schrijver, C. J.
    Tarbell, T. D.
    Wuelser, J. -P.
    Wolfson, C. J.
    Yanari, C.
    Mudge, J.
    Nguyen-Phuc, N.
    Timmons, R.
    van Bezooijen, R.
    Weingrod, I.
    Brookner, R.
    Butcher, G.
    Dougherty, B.
    Eder, J.
    Knagenhjelm, V.
    Larsen, S.
    Mansir, D.
    Phan, L.
    Boyle, P.
    Cheimets, P. N.
    DeLuca, E. E.
    Golub, L.
    Gates, R.
    Hertz, E.
    McKillop, S.
    Park, S.
    Perry, T.
    Podgorski, W. A.
    Reeves, K.
    [J]. SOLAR PHYSICS, 2014, 289 (07) : 2733 - 2779
  • [9] MORPHOLOGICAL RELATIONSHIPS IN CHROMOSPHERIC HALPHA FINE STRUCTURE
    FOUKAL, P
    [J]. SOLAR PHYSICS, 1971, 19 (01) : 59 - &
  • [10] Gaizauskas V, 1998, ASTR SOC P, V150, P257