Very short-term probabilistic forecasting of wind power based on OKDE

被引:0
|
作者
Wang, Sen [1 ]
Sun, Yonghui [1 ]
Chen, Li [1 ]
Wu, Pengpeng [1 ]
Zhou, Wei [1 ]
Yuan, Chang [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
来源
2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2022年
基金
国家重点研发计划;
关键词
WP; deterministic forecasting; probabilistic forecasting; CEEMD; LSTM; OKDE;
D O I
10.1109/SSCI51031.2022.10022201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate wind power (WP) forecasting plays an important role in the safe and stable operation of power systems, in the context of a high proportion of WP. In this paper, a two-stage WP very short-term probabilistic forecasting model is proposed. Firstly, the different frequency components are obtained based on complementary ensemble empirical mode decomposition (CEEMD) of historical data. Secondly, a long short-term memory (LSTM) based WP very short-term deterministic forecasting model was developed. An optimized kernel density estimate (OKDE) is established to fit the errors by means of band width (BW) constraints, and the quantile is calculated at different confidence levels. Finally, the deterministic forecasting results are combined with the quantile to calculate the probabilistic forecasting interval. Case Studies are also carried out to verify the effectiveness of the model proposed in this paper.
引用
收藏
页码:1108 / 1112
页数:5
相关论文
共 50 条
  • [41] Short-term Load Probabilistic Forecasting Based on Conditional Generative Adversarial Network Curve Generation
    Sun H.
    Wan C.
    Cao Z.
    Li Y.
    Ju P.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (23): : 189 - 199
  • [42] A review on short-term and ultra-short-term wind power prediction
    Xue, Yusheng
    Yu, Chen
    Zhao, Junhua
    Li, Kang
    Liu, Xueqin
    Wu, Qiuwei
    Yang, Guangya
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2015, 39 (06): : 141 - 151
  • [43] Short-term scenario-based probabilistic load forecasting: A data-driven approach
    Khoshrou, Abdolrahman
    Pauwels, Eric J.
    APPLIED ENERGY, 2019, 238 : 1258 - 1268
  • [44] Very short-term probabilistic prediction of PV based on multi-period error distribution
    Wang, Sen
    Sun, Yonghui
    Zhang, Shanming
    Zhou, Yan
    Hou, Dongchen
    Wang, Jianxi
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [45] An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events
    Cui, Yang
    Chen, Zhenghong
    He, Yingjie
    Xiong, Xiong
    Li, Fen
    ENERGY, 2023, 263
  • [46] Short-Term Forecasting of Hourly Electricity Power Demand Reggresion and Cluster Methods for Short-Term Prognosis
    Filipova-Petrakieva, Simona
    Dochev, Vencislav
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (02) : 8374 - 8381
  • [47] Short-term wind power prediction based on the combination of firefly optimization and LSTM
    Zhang R.
    Zheng X.
    Advanced Control for Applications: Engineering and Industrial Systems, 2024, 6 (02):
  • [48] BiLSTM-InceptionV3-Transformer-fully-connected model for short-term wind power forecasting
    Yin, Linfei
    Sun, Yujie
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [49] Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks
    Mora, Elianne
    Cifuentes, Jenny
    Marulanda, Geovanny
    ENERGIES, 2021, 14 (23)
  • [50] The "Weather Intelligence for Renewable Energies" Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation
    Sperati, Simone
    Alessandrini, Stefano
    Pinson, Pierre
    Kariniotakis, George
    ENERGIES, 2015, 8 (09): : 9594 - 9619