A Banach-Mazur computable but not Markov computable function on the computable real numbers

被引:9
|
作者
Hertling, P [1 ]
机构
[1] Univ Duisburg Gesamthsch, Inst Informat & Interakt Syst, D-47048 Duisburg, Germany
关键词
computability theory; computable analysis; computable real numbers; computable functions on real numbers;
D O I
10.1016/j.apal.2004.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two classical computability notions for functions mapping all computable real numbers to computable real numbers. It is clear that any function that is computable in the sense of Markov, i.e., computable with respect to a standard Godel numbering of the computable real numbers, is computable in the sense of Banach and Mazur, i.e., it maps any computable sequence of real numbers to a computable sequence of real numbers. We show that the converse is not true. This solves a long-standing open problem posed by Kushner. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 246
页数:20
相关论文
共 50 条
  • [1] A Banach-Mazur computable but not Markov computable function on the computable real numbers
    Hertling, P
    AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 962 - 972
  • [2] Weakly computable real numbers and total computable real functions
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    COMPUTING AND COMBINATORICS, 2001, 2108 : 586 - 595
  • [3] COMPUTABLE FRAMES IN COMPUTABLE BANACH SPACES
    Kaushik, S. K.
    Mantry, Poonam
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (02): : 93 - 100
  • [4] Nearly computable real numbers
    Hertling, Peter
    Janicki, Philip
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2024, 13 (01): : 57 - 88
  • [5] Weakly computable real numbers
    Ambos-Spies, K
    Weihrauch, K
    Zheng, XZ
    JOURNAL OF COMPLEXITY, 2000, 16 (04) : 676 - 690
  • [6] Monotonically computable real numbers
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    MATHEMATICAL LOGIC QUARTERLY, 2002, 48 (03) : 459 - 479
  • [7] Monotonically computable real numbers
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    COMBINATORICS, COMPUTABILITY AND LOGIC, 2001, : 187 - 201
  • [8] SPECTRUM OF THE FIELD OF COMPUTABLE REAL NUMBERS
    Korovina, M. V.
    Kudinov, O. V.
    ALGEBRA AND LOGIC, 2017, 55 (06) : 485 - 500
  • [9] Divergence bounded computable real numbers
    Zheng, XZ
    Lu, DC
    Bao, KJ
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (01) : 27 - 38
  • [10] COMPLEX-COMPUTABLE REAL NUMBERS
    KUSHNER, BA
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1973, 19 (05): : 447 - 452