Dimension functions, scaling sequences, and wavelet sets

被引:2
|
作者
Arambasic, Ljiljana [1 ]
Bakic, Damir [1 ]
Rajic, Rajna [2 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
[2] Univ Zagreb, Fac Min Geol & Petr Engn, Zagreb 10000, Croatia
关键词
dimension function; wavelet; CONSTRUCTION; EXISTENCE;
D O I
10.4064/sm198-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is a continuation of our study of dimension functions of orthonormal wavelets on the real line with dyadic dilations. The main result of Section 2 is Theorem 2.8 which provides an explicit reconstruction of the underlying generalized multiresolution analysis for any MSF wavelet. In Section 3 we reobtain a result of Bownik, Rzeszotnik and Speegle which states that for each dimension function D there exists an MSF wavelet whose dimension function coincides with D. Our method provides a completely new explicit construction of an admissible generalized multiresolution analysis (and, a posteriori, of a wavelet) from an arbitrary dimension function. Several examples are included.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [1] Dimension Functions of Self-Affine Scaling Sets
    Fu, Xiaoye
    Gabardo, Jean-Pierre
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 745 - 758
  • [2] Wavelet sets, scaling sets and generalized scaling sets on Vilenkin group
    Mahapatra, Prasadini
    Singh, Divya
    Swain, Arpit Chandan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [3] Wavelet Sets and Scaling Sets in Local Fields
    Biswaranjan Behera
    Journal of Fourier Analysis and Applications, 2021, 27
  • [4] Wavelet Sets and Scaling Sets in Local Fields
    Behera, Biswaranjan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [5] From scaling sets to scaling functions
    Maksimovic, Srdan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (02) : 255 - 267
  • [6] Dimension functions of cantor sets
    Garcia, Ignacio
    Molter, Ursula
    Scotto, Roberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3151 - 3161
  • [7] Frame scaling function sets and frame wavelet sets in Rd
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2483 - 2490
  • [8] CHARACTERIZATIONS OF DIMENSION FUNCTIONS OF WAVELET PACKETS
    Abdullah
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (03): : 151 - 167
  • [10] Decorrelating scaling functions for wavelet transformations
    L. V. Novikov
    Journal of Communications Technology and Electronics, 2006, 51 : 663 - 669