Edge-Aware Convolution for RGB-D Image Segmentation

被引:20
作者
Chen, Rongsen [1 ]
Zhang, Fang-Lue [2 ]
Rhee, Taehyun [1 ]
机构
[1] Victoria Univ Wellington, Computat Media Innovat Ctr, Wellington, New Zealand
[2] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
来源
2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ) | 2020年
关键词
RGB-D Semantic Segmentation; Convolutional Neural Network; Edge-Aware;
D O I
10.1109/ivcnz51579.2020.9290608
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.
引用
收藏
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2012, EUR C COMP VIS
[2]  
[Anonymous], 2013, Indoor semantic segmentation using depth information
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[5]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[6]   Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods [J].
Grazzini, Jacopo ;
Soille, Pierre .
PATTERN RECOGNITION, 2009, 42 (10) :2306-2316
[7]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[8]   STD2P: RGBD Semantic Segmentation using Spatio-Temporal Data-Driven Pooling [J].
He, Yang ;
Chiu, Wei-Chen ;
Keuper, Margret ;
Fritz, Mario .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :7158-7167
[9]  
Jaderberg M, 2015, ADV NEUR IN, V28
[10]   Geometry-Aware Distillation for Indoor Semantic Segmentation [J].
Jiao, Jianbo ;
Wei, Yunchao ;
Jie, Zequn ;
Shi, Honghui ;
Lau, Rynson ;
Huang, Thomas S. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2864-2873