Estimating the error variance in nonparametric regression by a covariate-matched U-statistic

被引:37
作者
Müller, UU
Schick, A
Wefelmeyer, W
机构
[1] Univ Gesamthsch Siegen, Fachbereich Math 6, D-57068 Siegen, Germany
[2] Univ Bremen, Fachbereich 3, D-2800 Bremen 33, Germany
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
基金
美国国家科学基金会;
关键词
empirical estimator; i.i.d; representation; efficient estimator; kernel estimator; relative mean square errors; cross validation;
D O I
10.1080/0233188031000078051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 19 条
  • [1] [Anonymous], J NONPARAMETR STAT
  • [2] BUCKLEY MJ, 1988, BIOMETRIKA, V75, P189, DOI 10.1093/biomet/75.2.189
  • [3] BUCKLEY MJ, 1989, BIOMETRIKA, V76, P203
  • [4] CARTER CK, 1992, J ROY STAT SOC B MET, V54, P773
  • [5] Dette H, 1999, STAT TEXTB MONOG, V159, P469
  • [6] Estimating the variance in nonparametric regression - what is a reasonable choice?
    Dette, H
    Munk, A
    Wagner, T
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 751 - 764
  • [7] GASSER T, 1986, BIOMETRIKA, V73, P625
  • [8] HALL P, 1990, BIOMETRIKA, V77, P415, DOI 10.1093/biomet/77.2.415
  • [9] HALL P, 1989, J ROY STAT SOC B MET, V51, P3
  • [10] HALL P, 1990, BIOMETRIKA, V77, P521, DOI 10.1093/biomet/77.3.521