On one-dimensional superlinear indefinite problems involving the φ-Laplacian

被引:0
作者
Kaufmann, Uriel [1 ]
Milne, Leandro [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
关键词
Elliptic one-dimensional problems; phi-Laplacian; positive solutions; MULTIPLE POSITIVE SOLUTIONS; EXISTENCE; SYSTEMS;
D O I
10.1007/s11784-018-0613-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega := (a, b) subset of R, m is an element of L-1 (Omega) and phi : R -> R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-phi(u')' = m(x) f(u) in Omega, u = 0 on partial derivative Omega, where f : [0, infinity) -> [0, infinity) is a continuous function which is, roughly speaking, superlinear with respect to phi. Our approach combines the Guo-Krasnoselskii fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m >= 0.
引用
收藏
页数:9
相关论文
共 23 条
[1]  
[Anonymous], 1988, NOTES REPORTS MATH S
[2]   Three positive solutions for a generalized Laplacian boundary value problem with a parameter [J].
Bai, Dingyong ;
Chen, Yuming .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4782-4788
[3]  
Benmezaï A, 2007, FIXED POINT THEORY, V8, P167
[4]  
Benmezaï A, 2013, NODEA-NONLINEAR DIFF, V20, P489, DOI 10.1007/s00030-012-0162-5
[5]   Existence and uniqueness results for some nonlinear boundary value problems [J].
Dang, H ;
Oppenheimer, SF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :35-48
[6]  
Diaz J.I., 1985, RES NOTES MATH, V1, P106
[7]  
Drabek P., 1997, QUASILINEAR ELLIPTIC
[8]   Multiple positive solutions for a superlinear problem: A topological approach [J].
Feltrin, Guglielmo ;
Zanolin, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :925-963
[9]  
García-Huidobro M, 2009, ADV DIFFERENTIAL EQU, V14, P401
[10]   Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology [J].
Glowinski, R ;
Rappaz, J .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :175-186