On spectral density of Neumann matrices

被引:16
作者
Belov, D
Konechny, A
机构
[1] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(03)00242-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In [L. Rastelli, et al., hep-th/0111281] the complete set of eigenvectors and eigenvalues of Neumann matrices was found. It was shown also that the spectral density contains a divergent constant piece that being regulated by truncation at level L equals log L/2pi. In this Letter we find an exact analytic expression for the finite part of the spectral density. This function allows one to calculate finite parts of various determinants arising in string field theory computations. We put our result to some consistency checks. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
[41]   Interpretation of the recipe for synthesizing genuine cross-spectral density matrices [J].
Shirai, Tomohiro .
OPTICS COMMUNICATIONS, 2010, 283 (22) :4478-4483
[42]   Reduced density matrices, their spectral resolutions, and the Kimball-Overhauser approach [J].
Ziesche, P ;
Tasnádi, F .
ANNALEN DER PHYSIK, 2004, 13 (04) :232-240
[43]   A NEW PROCEDURE FOR STOCHASTIC-REALIZATION OF SPECTRAL DENSITY-MATRICES [J].
VANDERSCHAFT, AJ ;
WILLEMS, JC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (06) :845-855
[44]   On the Spectral Density of Large Sample Covariance Matrices with Markov Dependent Columns [J].
Friesen, O. ;
Loewe, M. .
MARKOV PROCESSES AND RELATED FIELDS, 2014, 20 (02) :349-374
[45]   Spectral stability of the Neumann Laplacian [J].
Burenkov, VI ;
Davies, EB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :485-508
[46]   Neumann–Neumann–Schur complement methods for Fekete spectral elements [J].
Richard Pasquetti ;
Francesca Rapetti ;
Luca Pavarino ;
Elena Zampieri .
Journal of Engineering Mathematics, 2006, 56 :323-335
[47]   Neumann-Neumann algorithms for spectral elements in three dimensions [J].
Pavarino, LF .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (04) :471-493
[48]   SPECTRAL FACTORIZATION AND PREDICTION OF MULTIVARIATE PROCESSES WITH TIME-DEPENDENT RATIONAL SPECTRAL DENSITY-MATRICES [J].
SPENCER, NM ;
ANH, VV .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 33 :192-210
[49]   Zeroes of the Spectral Density of Discrete Schrödinger Operator with Wigner-von Neumann Potential [J].
Sergey Simonov .
Integral Equations and Operator Theory, 2012, 73 :351-364
[50]   Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner–von Neumann potential [J].
Sergey Simonov .
Mathematische Zeitschrift, 2016, 284 :335-411