On spectral density of Neumann matrices

被引:16
作者
Belov, D
Konechny, A
机构
[1] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(03)00242-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In [L. Rastelli, et al., hep-th/0111281] the complete set of eigenvectors and eigenvalues of Neumann matrices was found. It was shown also that the spectral density contains a divergent constant piece that being regulated by truncation at level L equals log L/2pi. In this Letter we find an exact analytic expression for the finite part of the spectral density. This function allows one to calculate finite parts of various determinants arising in string field theory computations. We put our result to some consistency checks. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
[11]   Spectral density of sparse sample covariance matrices [J].
Nagao, Taro ;
Tanaka, Toshiyuki .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (19) :4973-4987
[12]   THE SPECTRAL NEUMANN PROBLEM FOR THE LAPLACE OPERATOR WITH A SINGULARLY PERTURBED DENSITY [J].
GOLOVATYI, YD .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :165-167
[13]   SPECTRAL NORM AND VON NEUMANN TYPE TRACE INEQUALITY FOR DUAL QUATERNION MATRICES [J].
Ling, Chen ;
He, Hongjin ;
Qi, Liqun ;
Feng, Tingting .
PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (02) :229-247
[14]   Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices [J].
Kontopoulou, Eugenia-Maria ;
Grama, Ananth ;
Szpankowski, Wojciech ;
Drineas, Petros .
2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, :2486-2490
[15]   Randomized Linear Algebra Approaches to Estimate the von Neumann Entropy of Density Matrices [J].
Kontopoulou, Eugenia-Maria ;
Dexter, Gregory-Paul ;
Szpankowski, Wojciech ;
Grama, Ananth ;
Drineas, Petros .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) :5003-5021
[16]   Testing Equality of Multiple Power Spectral Density Matrices [J].
Ramirez, David ;
Romero, Daniel ;
Via, Javier ;
Lopez-Valcare, Roberto ;
Santamaria, Ignacio .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (23) :6268-6280
[17]   A phase transition for the limiting spectral density of random matrices [J].
Friesen, Olga ;
Loewe, Matthias .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-17
[18]   Spectral density of a Wishart model for nonsymmetric correlation matrices [J].
Vinayak .
PHYSICAL REVIEW E, 2013, 88 (04)
[19]   Spectral Density Matrices Used to Characterize Vibration Environments [J].
Martin, Luke A. ;
Schneider, Shawn P. .
SOUND AND VIBRATION, 2017, 51 (11) :8-13
[20]   Spectral density of autocorrelated Wishart-Levy matrices [J].
Aberg, Sven .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)