Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations

被引:505
作者
Sun, Jingjing [1 ]
Deng, Ziqing [1 ]
Yan, Aixin [1 ]
机构
[1] Univ Hong Kong, Sch Biol Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Antibiotics; Multidrug resistance; Multidrug efflux pumps; Regulation; Physiology; Efflux pump inhibitors; MULTIPLE-ANTIBIOTIC-RESISTANCE; ENTERICA SEROVAR TYPHIMURIUM; X-RAY-STRUCTURE; PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; MEXAB-OPRM; DRUG-RESISTANCE; TRANSCRIPTIONAL REGULATION; NEISSERIA-GONORRHOEAE;
D O I
10.1016/j.bbrc.2014.05.090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license.
引用
收藏
页码:254 / 267
页数:14
相关论文
共 177 条
[1]   ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium [J].
Abouzeed, Yousef M. ;
Baucheron, Sylvie ;
Cloeckaert, Axel .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2008, 52 (07) :2428-2434
[2]   The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication [J].
Aendekerk, S ;
Diggle, SP ;
Song, Z ;
Hoiby, N ;
Cornelis, P ;
Williams, P ;
Cámara, M .
MICROBIOLOGY-SGM, 2005, 151 :1113-1125
[3]   2 HIGHLY SIMILAR MULTIDRUG TRANSPORTERS OF BACILLUS-SUBTILIS WHOSE EXPRESSION IS DIFFERENTIALLY REGULATED [J].
AHMED, M ;
LYASS, L ;
MARKHAM, PN ;
TAYLOR, SS ;
VAZQUEZLASLOP, N ;
NEYFAKH, AA .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :3904-3910
[4]  
AHMED M, 1994, J BIOL CHEM, V269, P28506
[5]   Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa -: Dual modes of membrane anchoring and occluded cavity end [J].
Akama, H ;
Kanemaki, M ;
Yoshimura, M ;
Tsukihara, T ;
Kashiwagi, T ;
Yoneyama, H ;
Narita, S ;
Nakagawa, A ;
Nakae, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (51) :52816-52819
[6]   Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa [J].
Akama, H ;
Matsuura, T ;
Kashiwagi, S ;
Yoneyama, H ;
Narita, SI ;
Tsukihara, T ;
Nakagawa, A ;
Nakae, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (25) :25939-25942
[7]   The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution [J].
Alekshun, MN ;
Levy, SB ;
Mealy, TR ;
Seaton, BA ;
Head, JF .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (08) :710-714
[8]   Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa [J].
Alguel, Yilmaz ;
Lu, Duo ;
Quade, Nick ;
Sauter, Sebastian ;
Zhang, Xiaodong .
JOURNAL OF STRUCTURAL BIOLOGY, 2010, 172 (03) :305-310
[9]   Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology [J].
Alonso, A ;
Morales, G ;
Escalante, R ;
Campanario, E ;
Sastre, L ;
Martinez, JL .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2004, 53 (03) :432-434
[10]   The biological cost of antibiotic resistance [J].
Andersson, DI ;
Levin, BR .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (05) :489-493