On error bound moduli for locally Lipschitz and regular functions

被引:13
作者
Li, M. H. [1 ]
Meng, K. W. [2 ]
Yang, X. Q. [3 ]
机构
[1] Chongqing Univ Arts & Sci, Sch Math & Finance, Chongqing 402160, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Econ & Math, Chengdu 61130, Sichuan, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Error bound modulus; Locally Lipschitz; Outer limiting subdifferential; Support function; End set; Lower C-1 function; WEAK SHARP MINIMA; LOWER SEMICONTINUOUS FUNCTIONS; LINEAR INEQUALITY SYSTEMS; CONSTRAINT QUALIFICATIONS; CONVEX INEQUALITIES; BANACH-SPACES; METRIC REGULARITY; SUFFICIENT CONDITIONS; CALMNESS; STABILITY;
D O I
10.1007/s10107-017-1200-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we study local error bound moduli for a locally Lipschitz and regular function via outer limiting subdifferential sets. We show that the distance from 0 to the outer limiting subdifferential of the support function of the subdifferential set, which is essentially the distance from 0 to the end set of the subdifferential set, is an upper estimate of the local error bound modulus. This upper estimate becomes tight for a convex function under some regularity conditions. We show that the distance from 0 to the outer limiting subdifferential set of a lower C-1 function is equal to the local error bound modulus.
引用
收藏
页码:463 / 487
页数:25
相关论文
共 31 条
[1]  
Anderson EJ, 1998, LINEAR ALGEBRA APPL, V270, P231
[2]   Characterizations of error bounds for lower semicontinuous functions on metric spaces [J].
Azé, D ;
Corvellec, JN .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (03) :409-425
[3]  
Aze D., 2003, ESAIM P, V13, P1
[4]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359
[5]   Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming [J].
Canovas, M. J. ;
Henrion, R. ;
Lopez, M. A. ;
Parra, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (03) :925-952
[6]   Calmness of the Feasible Set Mapping for Linear Inequality Systems [J].
Canovas, M. J. ;
Lopez, M. A. ;
Parra, J. ;
Toledo, F. J. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) :375-389
[7]   Regularity and conditioning of solution mappings in variational analysis [J].
Dontchev, AL ;
Rockafellar, RT .
SET-VALUED ANALYSIS, 2004, 12 (1-2) :79-109
[8]  
Eberhard A., 2017, ARXIV170102852
[9]   Error Bounds: Necessary and Sufficient Conditions [J].
Fabian, Marian J. ;
Henrion, Rene ;
Kruger, Alexander Y. ;
Outrata, Jiri V. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2010, 18 (02) :121-149
[10]   Calmness of constraint systems with applications [J].
Henrion, R ;
Outrata, JV .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :437-464