Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

被引:0
作者
Marcus, M [1 ]
Véron, L
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Tours, Fac Sci & Tech, Dept Math, F-37200 Tours, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain of class C-2 in R-N and let K be a compact subset of partial derivativeOmega. Assume that q greater than or equal to (N + 1))(N - 1) and denote by U-K the maximal solution of - Deltau + u(q) = 0 in Omega which vanishes on partial derivativeOmega\K. We obtain sharp upper and lower estimates for U-K in terms of the Bessel capacity C-2/q,C-q' and prove that U-K is sigma-moderate. In addition we describe the precise asymptotic behavior of U-K at points sigma is an element of K, which depends on the "density" of K at sigma, measured in terms of the capacity C-2/q,C-q'.
引用
收藏
页码:483 / 527
页数:45
相关论文
共 19 条
[1]  
Adams DR., 1996, GRUNDLEHREN MATH WIS, V314
[2]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[3]  
Dynkin EB, 2003, MATH RES LETT, V10, P85
[4]  
Dynkin EB, 1998, COMMUN PUR APPL MATH, V51, P897, DOI 10.1002/(SICI)1097-0312(199808)51:8<897::AID-CPA2>3.0.CO
[5]  
2-0
[6]  
DYNKIN EB, NEW RELATIONS DIFFUS
[7]  
DYNKIN EB, IN PRESS C R ACAD 1
[8]  
DYNKIN EB, ABSOLUTE CONTINUITY
[9]  
DYNKIN EB, IN PRESS SUPERDIFFUS
[10]   BOUNDARY SINGULARITIES OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
GMIRA, A ;
VERON, L .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (02) :271-324