Discrete Wigner function for finite-dimensional systems

被引:55
作者
Luis, A
Perina, J
机构
[1] Palacky Univ, Opt Quant Lab, Olomouc 77207, Czech Republic
[2] Palacky Univ, Joint Lab Opt, Olomouc 77207, Czech Republic
[3] Acad Sci Czech Republ, Inst Phys, Olomouc, Czech Republic
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 05期
关键词
D O I
10.1088/0305-4470/31/5/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A phase-space approach to finite-dimensional systems is developed from basic principles. For a system describable by a Hilbert space of dimension d we define a one-to-one correspondence between operators and functions on a discrete and finite phase space with d(2) points valid for any dimension d. The properties fulfilled by this correspondence and its uniqueness are examined. This formalism is applied to the number difference and phase difference of a two-mode field. This case is compared with the marginal distribution for these variables arising from a two-mode Wigner function for number and phase.
引用
收藏
页码:1423 / 1441
页数:19
相关论文
共 32 条
  • [1] AGARWAL GS, 1981, PHYS REV A, V24, P2889, DOI 10.1103/PhysRevA.24.2889
  • [2] WEYL-WIGNER FORMALISM FOR ROTATION-ANGLE AND ANGULAR-MOMENTUM VARIABLES IN QUANTUM-MECHANICS
    BIZARRO, JP
    [J]. PHYSICAL REVIEW A, 1994, 49 (05): : 3255 - 3276
  • [3] DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS
    CAHILL, KE
    GLAUBER, RJ
    [J]. PHYSICAL REVIEW, 1969, 177 (5P1): : 1882 - +
  • [4] PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS
    CARRUTHERS, P
    NIETO, MM
    [J]. REVIEWS OF MODERN PHYSICS, 1968, 40 (02) : 411 - +
  • [5] A STOCHASTIC TREATMENT OF THE DYNAMICS OF AN INTEGER SPIN
    COHENDET, O
    COMBE, P
    SIRUGUE, M
    SIRUGUECOLLIN, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (13): : 2875 - 2883
  • [6] ELINAS D, 1991, J MATH PHYS, V32, P135
  • [7] QUANTUM PHASE ANGLES AND SU(INFINITY)
    ELLINAS, D
    [J]. JOURNAL OF MODERN OPTICS, 1991, 38 (12) : 2393 - 2399
  • [8] AN EXTENDED WEYL-WIGNER TRANSFORMATION FOR SPECIAL FINITE SPACES
    GALETTI, D
    PIZA, AFRD
    [J]. PHYSICA A, 1988, 149 (1-2): : 267 - 282
  • [9] Discrete coherent states and probability distributions in finite-dimensional spaces
    Galetti, D
    Marchiolli, MA
    [J]. ANNALS OF PHYSICS, 1996, 249 (02) : 454 - 480
  • [10] DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS
    HILLERY, M
    OCONNELL, RF
    SCULLY, MO
    WIGNER, EP
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03): : 121 - 167