Oscillation Detection and Parameter-Adaptive Hedge Algorithm for Real-Time Visual Tracking

被引:1
作者
Lv, Bolin [1 ]
Zhou, Xiaolong [1 ]
Chen, Shengyong [1 ]
机构
[1] ZheJiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV | 2018年 / 11259卷
基金
中国国家自然科学基金;
关键词
Visual tracking; Spectrum oscillation detection; Correlation filter; Online learning; OBJECT TRACKING;
D O I
10.1007/978-3-030-03341-5_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although correlation filter-based method performs high efficiency for visual tracking, its tracking precision may be greatly degraded when occlusion occurs. To remedy this, this paper proposes a new spectrum oscillation detection algorithm and an online learning strategy for real-time tracking. Firstly, to facilitate the tracking online learning to adjust weights itself, a weighted parameter-adaptive Hedge algorithm is presented to reduce the parameters of the adjustment. Secondly, since the spectrum of the correlation filter will fluctuate when occlusion occurs, a spectrum oscillation detection algorithm is proposed to detect the frequency spectrum response at target oscillation level. Thirdly, a backtracking algorithm is proposed to predict object position when the spectrum oscillation has been detected. Finally, an update index is introduced to determine whether the current frame is updated to improve tracking accuracy and robustness. Experiments conducted on VOT2016 and OTB-2015 demonstrate the good performance of the proposed tracking method and competitive performance against the state-of-the-art tracking methods.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 2009, Advances in neural information processing systems
[2]  
[Anonymous], 2014, P BRIT MACH VIS C
[3]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[4]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[5]   Attentional Correlation Filter Network for Adaptive Visual Tracking [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Yun, Sangdoo ;
Fischer, Tobias ;
Demiris, Yiannis ;
Choi, Jin Young .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4828-4837
[6]   Visual Tracking Using Attention-Modulated Disintegration and Integration [J].
Choi, Jongwon ;
Chang, Hyung Jin ;
Jeong, Jiyeoup ;
Demiris, Yiannis ;
Choi, Jin Young .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4321-4330
[7]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[8]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[9]   Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking [J].
Danelljan, Martin ;
Robinson, Andreas ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :472-488
[10]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318