4.3 μm fiber laser in CO2-filled hollow-core silica fibers

被引:68
作者
Cui, Yulong [1 ,3 ]
Huang, Wei [1 ,3 ]
Wang, Zefeng [1 ,2 ,3 ]
Wang, Mengling [4 ]
Zhou, Zhiyue [1 ,2 ]
Li, Zhixian [1 ,2 ]
Gao, Shoufei [4 ]
Wang, Yingying [4 ]
Wang, Pu [4 ]
机构
[1] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Hunan, Peoples R China
[2] State Key Lab Pulsed Power Laser Technol, Changsha 410073, Hunan, Peoples R China
[3] Hunan Prov Key Lab High Energy Laser Technol, Changsha 410073, Hunan, Peoples R China
[4] Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
关键词
MIDINFRARED EMISSION; OPTICAL-FIBER; POWER; BOUNDARY;
D O I
10.1364/OPTICA.6.000951
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Rare-earth-doped fiber lasers at 3-5 mu m can provide a variety of applications in defense, security, medicine, and so on. Limited by the maximum phonon energy of silicate glass host at room temperature, these lasers are normally based on soft-glass materials, e.g., fluoride or chalcogenide glass. However, due to the limited transparency of these fibers, until now these systems have only achieved coverage up to 3.92 mu m. Here, we report a CW fiber laser operating well beyond 4 mu m with significant power based on CO2-filled silica hollow-core fibers. By pumping via a homemade 2 mu m laser diode, similar to 82 mW optical power at 4.3 mu m was achieved at room temperature with a maximum laser efficiency similar to 19.3%. Our demonstration represents the longest-wavelength CW fiber laser to date, paving the way towards compact and high-power mid-infrared fiber lasers beyond the 4 mu m wavelength. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:951 / 954
页数:4
相关论文
共 30 条
[1]   Cavity-based mid-IR fiber gas laser pumped by a diode laser [J].
Abu Hassan, Muhammad Rosdi ;
Yu, Fei ;
Wadsworth, William J. ;
Knight, Jonathan C. .
OPTICA, 2016, 3 (03) :218-221
[2]   Mid IR hollow core fiber gas laser emitting at 4.6 μm [J].
Aghbolagh, F. B. A. ;
Nampoothiri, V ;
Debord, B. ;
Gerome, F. ;
Vincetti, L. ;
Benabid, F. ;
Rudolph, W. .
OPTICS LETTERS, 2019, 44 (02) :383-386
[3]   Watt-Level Nanosecond 4.42-μm Raman Laser Based on Silica Fiber [J].
Astapovich, Maxim S. ;
Gladyshev, Alexey V. ;
Khudyakov, Maxim M. ;
Kosolapov, Alexey F. ;
Likhachev, Mikhail E. ;
Bufetov, Igor A. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (01) :78-81
[4]   Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J].
Benabid, F ;
Knight, JC ;
Antonopoulos, G ;
Russell, PSJ .
SCIENCE, 2002, 298 (5592) :399-402
[5]  
CHANG TY, 1972, IEEE J QUANTUM ELECT, VQE 8, P598, DOI 10.1109/JQE.1972.1077043
[6]   Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth [J].
Chen, Yubin ;
Wang, Zefeng ;
Gu, Bo ;
Yu, Fei ;
Lu, Qisheng .
OPTICS LETTERS, 2016, 41 (21) :5118-5121
[7]   Large-pitch kagome-structured hollow-core photonic crystal fiber [J].
Couny, F. ;
Benabid, F. ;
Light, P. S. .
OPTICS LETTERS, 2006, 31 (24) :3574-3576
[8]   Single-mode photonic band gap guidance of light in air [J].
Cregan, RF ;
Mangan, BJ ;
Knight, JC ;
Birks, TA ;
Russell, PS ;
Roberts, PJ ;
Allan, DC .
SCIENCE, 1999, 285 (5433) :1537-1539
[9]   3.77-5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures [J].
Fedorov, Vladimir V. ;
Mirov, Sergey B. ;
Gallian, Andrew ;
Badikov, Dmitri V. ;
Frolov, Mikhail P. ;
Korostelin, Yuri V. ;
Kozlovsky, Vladimir I. ;
Landman, Alexander I. ;
Podmar'kov, Yuri P. ;
Akimov, Vadim A. ;
Voronov, Artem A. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (9-10) :907-917
[10]   30 W fluoride glass all-fiber laser at 2.94 μm [J].
Fortin, Vincent ;
Bernier, Martin ;
Bah, Souleymane T. ;
Vallee, Real .
OPTICS LETTERS, 2015, 40 (12) :2882-2885