Numerical homogenization beyond scale separation

被引:60
作者
Altmann, Robert [1 ]
Henning, Patrick [2 ,3 ]
Peterseim, Daniel [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44801 Bochum, Germany
[3] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
基金
欧洲研究理事会;
关键词
FINITE-ELEMENT-METHOD; HETEROGENEOUS MULTISCALE METHOD; PRIORI ERROR ANALYSIS; LOCAL APPROXIMATION SPACES; ELLIPTIC PROBLEMS; ANDERSON LOCALIZATION; GALERKIN METHOD; STOCHASTIC HOMOGENIZATION; ANALYTICAL FRAMEWORK; EXPONENTIAL DECAY;
D O I
10.1017/S0962492921000015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerical homogenization is a methodology for the computational solution of multiscale partial differential equations. It aims at reducing complex large-scale problems to simplified numerical models valid on some target scale of interest, thereby accounting for the impact of features on smaller scales that are otherwise not resolved. While constructive approaches in the mathematical theory of homogenization are restricted to problems with a clear scale separation, modern numerical homogenization methods can accurately handle problems with a continuum of scales. This paper reviews such approaches embedded in a historical context and provides a unified variational framework for their design and numerical analysis. Apart from prototypical elliptic model problems, the class of partial differential equations covered here includes wave scattering in heterogeneous media and serves as a template for more general multi-physics problems.
引用
收藏
页码:1 / 86
页数:86
相关论文
共 223 条
[1]   MIXED MULTISCALE FINITE ELEMENT METHODS USING LIMITED GLOBAL INFORMATION [J].
Aarnes, J. E. ;
Efendiev, Y. ;
Jiang, L. .
MULTISCALE MODELING & SIMULATION, 2008, 7 (02) :655-676
[2]   On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation [J].
Aarnes, JE .
MULTISCALE MODELING & SIMULATION, 2004, 2 (03) :421-439
[3]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[4]   AN ADAPTIVE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR STOKES FLOW IN POROUS MEDIA [J].
Abdulle, A. ;
Budac, O. .
MULTISCALE MODELING & SIMULATION, 2015, 13 (01) :256-290
[5]  
Abdulle A., 2009, GAKUTO INT SER MATH, V31, P133
[6]   Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems [J].
Abdulle, Assyr ;
Arjmand, Doghonay ;
Paganoni, Edoardo .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (06) :545-551
[7]   EFFECTIVE MODELS FOR LONG TIME WAVE PROPAGATION IN LOCALLY PERIODIC MEDIA [J].
Abdulle, Assyr ;
Pouchon, Timothee .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) :2701-2730
[8]   LOCALIZED ORTHOGONAL DECOMPOSITION METHOD FOR THE WAVE EQUATION WITH A CONTINUUM OF SCALES [J].
Abdulle, Assyr ;
Henning, Patrick .
MATHEMATICS OF COMPUTATION, 2017, 86 (304) :549-587
[9]   A PRIORI ERROR ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION OVER LONG TIME [J].
Abdulle, Assyr ;
Pouchon, Timothee .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1507-1534
[10]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87