Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction

被引:64
作者
Ning, Fuda [1 ]
Cong, Weilong [1 ]
Wang, Hui [1 ]
Hu, Yingbin [1 ]
Hu, Zhonglue [2 ]
Pei, Zhijian [3 ]
机构
[1] Texas Tech Univ, Dept Ind Mfg & Syst Engn, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[3] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Rotary ultrasonic machining (RUM); Surface grinding; Carbon fiber reinforced plastic (CFRP) composites; Feed-direction cutting force; Mechanistic predictive model; FIBER-REINFORCED PLASTICS; BRITTLE-FRACTURE; PREDICTION; DAMAGE; CERAMICS; GLASS;
D O I
10.1007/s00170-017-0149-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For carbon fiber-reinforced plastic (CFRP) composite components, especially advanced CFRP components with complex three-dimensional features, surface grinding is often needed to generate final dimensions and functional surfaces. Surface damages are frequently induced during surface grinding, reducing the load-bearing capability and service life of the components. Therefore, it is desirable to perform surface grinding of CFRP in a high-quality and high-efficiency way. Rotary ultrasonic machining (RUM) surface grinding has been investigated to machine CFRP for improved surface quality. Cutting force is one of the most important output variables for evaluating RUM surface grinding. The modeling of cutting force is essential to effectively control the occurrence of surface damages during RUM surface grinding of CFRP. In the RUM surface grinding process, the workpiece material is primarily removed by abrasives on the tool peripheral surface, thus it is essential to investigate the feed-direction cutting force model. However, such models are not available in the literature. In this study, for the first time, a mechanistic feed-direction cutting force model in RUM surface grinding of CFRP is established based on the assumption that the material is removed by brittle fracture. The mechanistic model has one parameter, fracture volume factor of the workpiece material, which needs to be determined by an experiment. There is a good consistency between theoretically predicted trends and experimentally observed results on the relationships between feed-direction cutting force and input variables.
引用
收藏
页码:1217 / 1229
页数:13
相关论文
共 46 条
[1]  
[Anonymous], P 2015 INT MAN SCI E
[2]   An analytical model of rotary ultrasonic milling [J].
Bertsche, Erich ;
Ehmann, Kornel ;
Malukhin, Kostyantyn .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 65 (9-12) :1705-1720
[3]   Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force [J].
Cong, W. L. ;
Pei, Z. J. ;
Sun, X. ;
Zhang, C. L. .
ULTRASONICS, 2014, 54 (02) :663-675
[4]   Rotary ultrasonic machining of CFRP composites: A study on power consumption [J].
Cong, W. L. ;
Pei, Z. J. ;
Deines, T. W. ;
Srivastava, Anil ;
Riley, L. ;
Treadwell, C. .
ULTRASONICS, 2012, 52 (08) :1030-1037
[5]   Rotary ultrasonic machining of CFRP: A comparison with twist drilling [J].
Cong, W. L. ;
Pei, Z. J. ;
Feng, Q. ;
Deines, T. W. ;
Treadwell, C. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2012, 31 (05) :313-321
[6]   Rotary ultrasonic machining of CFRP using cold air as coolant: feasible regions [J].
Cong, W. L. ;
Pei, Z. J. ;
Deines, T. W. ;
Treadwell, C. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (10) :899-906
[7]  
Cong W.L., 2011, J MANUF SCI E-T ASME, V133
[8]  
Davim J.P., 2015, MACHINABILITY FIBRE
[9]   Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments [J].
Davim, JP ;
Reis, P .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 160 (02) :160-167
[10]   Drilling carbon fiber reinforced plastics manufactured by autoclave - experimental and statistical study [J].
Davim, JP ;
Reis, P .
MATERIALS & DESIGN, 2003, 24 (05) :315-324