Co-delivery of artemether and piperine via core-shell microparticles for enhanced sustained release

被引:8
作者
Ali, Syed Wajahat [1 ,2 ,3 ]
Mangrio, Farhana Akbar [4 ]
Li, Fenfen [1 ,2 ,3 ]
Dwivedi, Pankaj [4 ,6 ]
Rajput, Muhammad Umer [1 ,2 ,3 ]
Ali, Rizwan [1 ,2 ,3 ]
Khan, Muhammad Imran [1 ,2 ,3 ]
Ding, Weiping [1 ,2 ,3 ]
Xu, Ronald X. [4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Ctr Biomed Engn, Hefei 230027, Peoples R China
[3] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230027, Peoples R China
[4] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230027, Peoples R China
[5] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[6] Univ Hlth Sci & Pharm St Louis, Dept Pharmaceut & Adm Sci, St Louis, MO 63110 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Electrospray; Microencapsulation; Sustained-release; Drug delivery; Co-axial needle; LOADED PLGA MICROSPHERES; COAXIAL ELECTROSPRAY; DRUG-DELIVERY; ORAL DELIVERY; NANOPARTICLES; PACLITAXEL; PHARMACOKINETICS; COMBINATION; FORMULATION; CHITOSAN;
D O I
10.1016/j.jddst.2021.102505
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Artemether, a highly efficient antimalarial drug, possesses the potential to treat patients suffering from Plasmodium-falciparum (P.F). However, artemether can be degraded rapidly by stomach acids and cleared quickly from the body after oral administration, leading to poor therapeutic effects, which is a significant hindrance in the clinical cure of malaria. To overcome this problem, we developed two types of core-shell microparticles co-loaded with artemether and piperine based on polylactic-co-glycolic acid (PLGA) and chitosan (CS) by using the promising coaxial electrospray system (CES) for sustained drug release. 1.9 um artemether-piperine loaded PLGA-chitosan (AP-PLGA-CS) microparticles and 1.3 um artemether-piperine loaded PLGA (AP-PLGA) microparticles were successfully fabricated using optimized operation parameters of CES. X-ray diffractometer (XRD) and differential scanning calorimetry (DSC) results showed the presence of artemether and piperine within the polymer matrix when encapsulated in the microparticles after CES. Both prepared AP-PLGA-CS and AP-PLGA microparticles exhibited high drug encapsulation and drug loading efficiency. Moreover, both of them displayed enhanced sustained drug release behavior due to the PLGA or PLGA-CS shell, which protected the fast degradation of artemether from the acidic gastric juice. All results suggested that the AP-PLGA-CS and AP-PLGA microparticles not only embrace the great potential in the application of malaria treatment but also provide a promising platform to encapsulate multiple drugs in polymeric particles for drug delivery.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
Ahmad N, 2020, ARTIF CELL NANOMED B, V48, P749, DOI 10.1080/21691401.2020.1748640
[2]   Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles [J].
Ahmad, Niyaz ;
Ahmad, Rizwan ;
Alam, Md Aftab ;
Ahmad, Farhan Jalees ;
Amir, Mohd ;
Pottoo, Faheem Hyder ;
Sarafroz, Md ;
Jafar, Mohammed ;
Umar, Khalid .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 128 :825-838
[3]   Repurposing Itraconazole Loaded PLGA Nanoparticles for Improved Antitumor Efficacy in Non-Small Cell Lung Cancers [J].
Alhakamy, Nabil A. ;
Md, Shadab .
PHARMACEUTICS, 2019, 11 (12)
[4]   Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications [J].
Bock, Nathalie ;
Woodruff, Maria A. ;
Hutmacher, Dietmar W. ;
Dargaville, Tim R. .
POLYMERS, 2011, 3 (01) :131-149
[5]  
Byakika-Kibwika P, 2010, THER CLIN RISK MANAG, V6, P11
[6]   The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method [J].
Chen, Jiaming ;
Cao, Lihua ;
Cui, Yuecheng ;
Tu, Kehua ;
Wang, Hongjun ;
Wang, Li-Qun .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 161 :10-17
[7]   Engineered multifunctional biodegradable hybrid microparticles for paclitaxel delivery in cancer therapy [J].
Dwivedi, Pankaj ;
Han, Shuya ;
Mangrio, Farhana ;
Fan, Rong ;
Dwivedi, Monika ;
Zhu, Zhigiang ;
Huang, Fangsheng ;
Wu, Qiang ;
Khatik, Renuka ;
Cohn, David E. ;
Si, Ting ;
Hu, Shuiying ;
Sparreboom, Alex ;
Xu, Ronald X. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 102 :113-123
[8]   Core-shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy [J].
Dwivedi, Pankaj ;
Yuan, Shuai ;
Han, Shuya ;
Mangrio, Farhana Akbar ;
Zhu, Zhiqiang ;
Lei, Fan ;
Ming, Zhang ;
Cheng, Lei ;
Liu, Zhongfa ;
Si, Ting ;
Xu, Ronald X. .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 :S481-S491
[9]   Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of arteether: pharmacokinetics, toxicity and antimalarial activity in mice [J].
Dwivedi, Pankaj ;
Khatik, Renuka ;
Khandelwal, Kiran ;
Srivastava, Richa ;
Taneja, Isha ;
Raju, Kanumuri Siva Rama ;
Dwivedi, Hemlata ;
Shukla, Prashant ;
Gupta, Pramod ;
Singh, Sarika ;
Tripathi, Renu ;
Paliwal, Sarvesh Kumar ;
Wahajuddin ;
Dwivedi, Anil Kumar ;
Mishra, Prabhat Ranjan .
RSC ADVANCES, 2014, 4 (110) :64905-64918
[10]   Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis [J].
Ferreira, C. ;
Soares, D. C. ;
Barreto-Junior, C. B. ;
Nascimento, M. T. ;
Freire-de-Lima, L. ;
Delorenzi, J. C. ;
Lima, M. E. F. ;
Atella, G. C. ;
Folly, E. ;
Carvalho, T. M. U. ;
Saraiva, E. M. ;
Pinto-da-Silva, L. H. .
PHYTOCHEMISTRY, 2011, 72 (17) :2155-2164