Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent

被引:16
作者
Korabel, Nickolay [1 ]
Barkai, Eli [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 01期
基金
以色列科学基金会;
关键词
INDIFFERENT FIXED-POINTS; INTERVAL MAPS; FRACTIONAL KINETICS; NONSTATIONARY CHAOS; ERGODIC PROPERTIES; INFINITE; INFORMATION; COMPLEXITY; DIFFUSION; SEQUENCES;
D O I
10.1103/PhysRevE.82.016209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One-dimensional intermittent maps with stretched exponential delta x(t) similar to delta x(0)e(lambda alpha t alpha) separation of nearby trajectories are considered. When t --> infinity the standard Lyapunov exponent lambda = Sigma(t-1)(i=0)ln|M'(x(i))|/t is zero (M' is a Jacobian of the map). We investigate the distribution of lambda(alpha) = Sigma(t-1)(i=0)ln|M'(x(i))|/t(alpha), where alpha is determined by the nonlinearity of the map in the vicinity of marginally unstable fixed points. The mean of lambda(alpha) is determined by the infinite invariant density. Using semianalytical arguments we calculate the infinite invariant density for the Pomeau-Manneville map, and with it we obtain excellent agreement between numerical simulation and theory. We show that alpha <lambda(alpha)> is equal to Krengel's entropy and to the complexity calculated by the Lempel-Ziv compression algorithm. This generalized Pesin's identity shows that <lambda(alpha)> and Krengel's entropy are the natural generalizations of usual Lyapunov exponent and entropy for these systems.
引用
收藏
页数:11
相关论文
共 66 条
  • [1] Generalized arcsine law and stable law in an infinite measure dynamical system
    Akimoto, Takuma
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (01) : 171 - 186
  • [2] Akimoto T, 2007, J KOREAN PHYS SOC, V50, P254, DOI 10.3938/jkps.50.254
  • [3] Transport in polygonal billiards
    Alonso, D
    Ruiz, A
    de Vega, I
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 187 (1-4) : 184 - 199
  • [4] Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps -: art. no. 020601
    Añaños, GFJ
    Tsallis, C
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020601 - 1
  • [5] [Anonymous], 1997, MATH SURVEYS MONOGR
  • [6] Information and dynamical systems: a concrete measurement on sporadic dynamics
    Argenti, F
    Benci, V
    Cerrai, P
    Cordelli, A
    Galatolo, S
    Menconi, G
    [J]. CHAOS SOLITONS & FRACTALS, 2002, 13 (03) : 461 - 469
  • [7] Numerical study on ergodic properties of triangular billiards
    Artuso, R
    Casati, G
    Guarneri, I
    [J]. PHYSICAL REVIEW E, 1997, 55 (06) : 6384 - 6390
  • [8] Artuso R, 2003, PROG THEOR PHYS SUPP, P1, DOI 10.1143/PTPS.150.1
  • [9] Badii R., 1997, COMPLEXITY HIERARCHI
  • [10] Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map
    Baldovin, F
    Robledo, A
    [J]. PHYSICAL REVIEW E, 2004, 69 (04): : 4 - 1