Functionalization of TiO2 sol-gel derived films for cell confinement

被引:3
作者
Pasquardini, L. [1 ,6 ]
Roncador, A. [2 ,7 ]
Prusakova, V [1 ]
Vanzetti, L. [3 ]
Potrich, C. [3 ,4 ]
Lunelli, L. [3 ,4 ]
Pederzolli, C. [3 ]
Iannotta, S. [5 ]
Macchi, P. [2 ]
Dire, S. [1 ]
机构
[1] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Trento, Italy
[2] Univ Trento, Dept Cellular Computat & Integrat Biol CIBIO, Lab Mol & Cellular Neurobiol, Via Sommar 9, I-38123 Trento, Italy
[3] Fdn Bruno Kessler FBK, Ctr Sensors & Devices, Via Sommar 18, I-38123 Trento, Italy
[4] Consiglio Nazl Ric IBF CNR, Unita Trento, Ist Biofis, Via Cascata 56-C 18, I-38123 Trento, Italy
[5] Consiglio Nazl Ric IMEM CNR, Ist Mat Elettron & Magnetismo, Parco Area Sci 37A, I-43124 Parma, Italy
[6] Indivenire Srl, Via Cascata 56-C, I-38123 Trento, Italy
[7] Microbion Srl, Via Monte Carega 22, I-37057 Verona, Italy
关键词
Silanization; Neuronal culture array; Molecule spotting; Streptavidin-poly-lysine chemistry; Surface patterning; Cell confinement; TiO2 sol-gel film; THIN-FILMS; GUIDANCE; NEURONS; ARRAY; SURFACES; GROWTH; DEVICE; GOLD;
D O I
10.1016/j.colsurfb.2021.111787
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The neuroscience field has increased enormously over the last decades, achieving the possible real application of neuronal cultures not only for reproducing neural architectures resembling in vivo tissues, but also for the development of functional devices. In this context, surface patterning for cell confinement is crucial, and new active materials together with new protocols for preparing substrates suitable for confining cells, guiding their processes in the desired configuration are extremely appreciated. Here, TiO2 sol-gel derived films were selected as proof-of-concept materials to grow neurons in suitable confined configurations, taking advantage of the biocompatible properties of modified TiO2 substrates. TiO2 sol-gel derived films were made compatible with the growth of neurons thanks to a stable and controlled poly-lysine coating, obtained by silanization chemistry and streptavidin-biotin interactions. Moreover, a spotting protocol, here described and optimized, allowed the simple preparation of arrays of neurons, where cell adhesion was guided in specific areas and the neurites development driven in the desired arrangement. The resulting arrays were successfully tested for the growth and differentiation of neurons, demonstrating the possible adhesion of cells in specific areas of the film, therefore paving the way to applications such as the direct growth of excitable cells nearby electrodes of devices, with an evident enhancement of cell-electrodes communication.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Cellular response to micropatterned growth promoting and inhibitory substrates [J].
Belkaid, Wiam ;
Thostrup, Peter ;
Yam, Patricia T. ;
Juzwik, Camille A. ;
Ruthazer, Edward S. ;
Dhaunchak, Ajit S. ;
Colman, David R. .
BMC BIOTECHNOLOGY, 2013, 13
[2]  
Bradley J.A, 2018, CURR PROTOC TOXICOL, Ve67, P1
[3]   Microstamp patterns of biomolecules for high-resolution neuronal networks [J].
Branch, DW ;
Corey, JM ;
Weyhenmeyer, JA ;
Brewer, GJ ;
Wheeler, BC .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1998, 36 (01) :135-141
[4]   TiO2 surfaces support neuron growth during electric field stimulation [J].
Canillas, M. ;
Moreno, B. ;
Chinarro, E. ;
Rajnicek, A. M. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 79 :1-8
[5]   Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes [J].
Chen, Xianlan ;
Liu, Wei ;
Tang, Lele ;
Wang, Jian ;
Pan, Haibo ;
Du, Min .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 34 :304-310
[6]   Neural cell growth on TiO2 anatase nanostructured surfaces [J].
Collazos-Castro, Jorge E. ;
Cruz, Ana M. ;
Carballo-Vila, Monica ;
Lira-Cantu, Monica ;
Abad, Llibertat ;
Perez del Pino, Angel ;
Fraxedas, Jordi ;
San Juan, Aurelie ;
Fonseca, Carlos ;
Pego, Ana P. ;
Casan-Pastor, Nieves .
THIN SOLID FILMS, 2009, 518 (01) :160-170
[7]   Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth [J].
Edgington, R. J. ;
Thalhammer, A. ;
Welch, J. O. ;
Bongrain, A. ;
Bergonzo, P. ;
Scorsone, E. ;
Jackman, R. B. ;
Schoepfer, R. .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (05)
[8]   Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights [J].
Emelyanov, A., V ;
Nikiruy, K. E. ;
Serenko, A., V ;
Sitnikov, A., V ;
Presnyakov, M. Yu ;
Rybka, R. B. ;
Sboev, A. G. ;
Rylkov, V. V. ;
Kashkarov, P. K. ;
Kovalchuk, M., V ;
Demin, V. A. .
NANOTECHNOLOGY, 2020, 31 (04)
[9]   Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model [J].
Gale, Ella M. .
FARADAY DISCUSSIONS, 2019, 213 :521-551
[10]   Poly-L-ornithine enhances migration of neural stem/progenitor cells via promoting α-Actinin 4 binding to actin filaments [J].
Ge, Hongfei ;
Yu, Anyong ;
Chen, Jingyu ;
Yuan, Jichao ;
Yin, Yi ;
Duanmu, Wangsheng ;
Tan, Liang ;
Yang, Yang ;
Lan, Chuan ;
Chen, Weixiang ;
Feng, Hua ;
Hu, Rong .
SCIENTIFIC REPORTS, 2016, 6