Spontaneous Speech Emotion Recognition using Prior Knowledge

被引:0
|
作者
Chakraborty, Rupayan [1 ]
Pandharipande, Meghna [1 ]
Kopparapu, Sunil Kumar [1 ]
机构
[1] TCS Innovat Labs Mumbai, Yantra Pk, Thane West 400601, India
关键词
Emotion recognition; knowledge-based framework; spontaneous speech; non-acted emotion; call center audio; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic and spontaneous speech emotion recognition is an important part of a human-computer interactive system. However, emotion identification in spontaneous speech is difficult because most often the emotion expressed by the speaker are not necessarily as prominent as in acted speech. In this paper, we propose a spontaneous speech emotion recognition framework that makes use of the associated knowledge. The framework is motivated by the observation that there is significant disagreement amongst human annotators when they annotate spontaneous speech; the disagreement largely reduces when they are provided with additional knowledge related to the conversation. The proposed framework makes use of the contexts (derived from linguistic contents) and the knowledge regarding the time lapse of the spoken utterances in the context of an audio call to reliably recognize the current emotion of the speaker in spontaneous audio conversations. Our experimental results demonstrate that there is a significant improvement in the performance of spontaneous speech emotion recognition using the proposed framework.
引用
收藏
页码:2866 / 2871
页数:6
相关论文
共 50 条
  • [31] Emotion recognition in speech using neural networks
    Nicholson, J
    Takahashi, K
    Nakatsu, R
    NEURAL COMPUTING & APPLICATIONS, 2000, 9 (04): : 290 - 296
  • [32] RECOGNITION OF EMOTION IN SPEECH USING SPECTRAL PATTERNS
    Shahzadi, Ali
    Ahmadyfard, Alireza
    Yaghmaie, Khashayar
    Harimi, Ali
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2013, 26 (02) : 140 - 158
  • [33] Speech Emotion Recognition Using Audio Matching
    Chaturvedi, Iti
    Noel, Tim
    Satapathy, Ranjan
    ELECTRONICS, 2022, 11 (23)
  • [34] Speech Emotion Recognition Using Fourier Parameters
    Wang, Kunxia
    An, Ning
    Li, Bing Nan
    Zhang, Yanyong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2015, 6 (01) : 69 - 75
  • [35] SPEECH EMOTION RECOGNITION USING SEMANTIC INFORMATION
    Tzirakis, Panagiotis
    Anh Nguyen
    Zafeiriou, Stefanos
    Schuller, Bjoern W.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6279 - 6283
  • [36] Speech Emotion Recognition Using Deep Learning
    Alagusundari, N.
    Anuradha, R.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 313 - 325
  • [37] Speech Emotion Recognition Using Data Augmentation
    Kapoor, Tanisha
    Ganguly, Arnaja
    Rajeswari, D.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [38] Speech Emotion Recognition Using Deep Learning
    Ahmed, Waqar
    Riaz, Sana
    Iftikhar, Khunsa
    Konur, Savas
    ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 191 - 197
  • [39] Speech emotion recognition using data augmentation
    Praseetha, V. M.
    Joby, P. P.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2021, 25 (4) : 783 - 792
  • [40] Emotion Recognition in Speech Using MFCC and Classifiers
    Ajitha, G.
    Prashanth, Addagatla
    Radhika, Chelle
    Chaitanya, Kancharapu
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 197 - 207