Analytical survey of the predator-prey model with fractional derivative order

被引:19
作者
Abbagari, Souleymanou [1 ]
Houwe, Alphonse [2 ]
Saliou, Youssoufa [2 ]
Douvagai [2 ]
Chu, Yu-Ming [3 ,4 ]
Inc, Mustafa [5 ,6 ]
Rezazadeh, Hadi [7 ]
Doka, Serge Y. [8 ]
机构
[1] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci, POB 08, Kaele, Cameroon
[2] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[3] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
[5] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[7] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[8] Univ Ngaoundere, Dept Phys, Fac Sci, POB 454, Ngaoundere, Cameroon
关键词
NONLINEAR SCHRODINGER-EQUATION; TRAVELING-WAVE SOLUTIONS; OPTICAL SOLITONS; PROPAGATION; DISPERSION; EVOLUTION;
D O I
10.1063/5.0038826
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work addresses the analytical investigation of the prey-predator behavior modeled by nonlinear evolution equation systems with fractional derivative order. Through the New Extended Algebraic Method (NEAM), we unearthed diverse types of soliton solutions including bright, dark solitons, combined trigonometric function solutions, and singular solutions. Besides the results obtained in the work of Khater, some new complex soliton solutions are also unearthed. The NEAM can also be used like the synthesis of the two mathematical tools.
引用
收藏
页数:12
相关论文
共 51 条
[1]  
Abbagari S., 2017, J Appl Math Phys, V5, P1370
[2]   Controllable rational solutions in nonlinear optics fibers [J].
Abbagari, Souleymanou ;
Mukam, Serge P. ;
Houwe, Alphonse ;
Kuetche, Victor K. ;
Inc, Mustafa ;
Doka, Serge Y. ;
Almohsen, Bandar ;
Bouetou, Thomas B. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08)
[3]   A novel method for a fractional derivative with non-local and non-singular kernel [J].
Akgul, Ali .
CHAOS SOLITONS & FRACTALS, 2018, 114 :478-482
[4]   Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique [J].
Akgul, Ali ;
Inc, Mustafa ;
Karatas, Esra ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[5]   Improved (G′/G)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations [J].
Akgul, Ali ;
Kilicman, Adem ;
Inc, Mustafa .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[6]   Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift [J].
Alka ;
Goyal, Amit ;
Gupta, Rama ;
Kumar, C. N. ;
Raju, Thokala Soloman .
PHYSICAL REVIEW A, 2011, 84 (06)
[7]   Optical solitons for higher-order nonlinear Schrodinger's equation with three exotic integration architectures [J].
Alphonse, Houwe ;
Hubert, Malwe Boudoue ;
Savaissou, Nestor ;
Jerome, Dikwa ;
Justin, Mibaile ;
Betchewe, Gambo ;
Doka, Serge Y. ;
Crepin, Kofane Timoleon ;
Khan, Salam ;
Biswas, Anjan ;
Ekici, Mehmet ;
Adesanya, Samuel ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2019, 179 :861-866
[8]   Analytic study on two nonlinear evolution equations by using the (G′/G)-expansion method [J].
Aslan, Ismail ;
Ozis, Turgut .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) :425-429
[9]   On a Fractional Operator Combining Proportional and Classical Differintegrals [J].
Baleanu, Dumitru ;
Fernandez, Arran ;
Akgul, Ali .
MATHEMATICS, 2020, 8 (03)
[10]   Modulation instability in noninstantaneous Kerr media with walk-off and cross-phase modulation for mixed group-velocity-dispersion regimes [J].
Canabarro, Askery ;
Santos, B. ;
Bernardo, B. de Lima ;
Moura, Andre L. ;
Soares, W. C. ;
de Lima, E. ;
Gleria, Iram ;
Lyra, M. L. .
PHYSICAL REVIEW A, 2016, 93 (02)