Global classical large solutions to the 2D liquid crystal flows with partial viscosity

被引:0
作者
Niu, Yanxia [1 ]
Wang, Yinxia [2 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Peoples R China
关键词
Liquid crystal flows with partial; viscosity; Global existence; Classical large solutions; BLOW-UP CRITERION; WELL-POSEDNESS; MHD EQUATIONS; REGULARITY; EXISTENCE; DECAY;
D O I
10.1016/j.aml.2021.107346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the initial value problem for the two dimensional liquid crystal flows with partial viscosity. Global classical large solutions are proved by using the energy estimate, the anisotropic type Sobolev inequality and the tricky interpolation techniques. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[2]   LPS'S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS [J].
Chen, Qing ;
Tan, Zhong ;
Wu, Guochun .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1072-1080
[3]  
Ericksen J. L., 1987, IMA VOLUMES MATH ITS, V5
[4]  
Ericksen J. L., 1976, ADV LIQ CRYST, P233, DOI DOI 10.1016/B978-0-12-025002-8.50012-9
[5]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[6]  
Fan J., 2015, ANAL APPL, V13, P225
[7]   THE EXISTENCE AND BLOW-UP CRITERION OF LIQUID CRYSTALS SYSTEM IN CRITICAL BESOV SPACE [J].
Hao, Yi-hang ;
Liu, Xian-Gao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) :225-236
[8]  
Hineman JL, 2013, ARCH RATION MECH AN, V210, P177, DOI 10.1007/s00205-013-0643-7
[9]   Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in R2 [J].
Hong, Min-Chun ;
Xin, Zhouping .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1364-1400
[10]   Global existence of solutions of the simplified Ericksen-Leslie system in dimension two [J].
Hong, Min-Chun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :15-36