EFFECT OF SURFACTANT ON THE MORPHOLOGY OF ZnO/Al:ZnO NANOSTRUCTURES AND THEIR ETHANOL SENSING APPLICATIONS AT ROOM TEMPERATURE

被引:6
作者
Chitra, M. [1 ]
Uthayarani, K. [1 ]
Rajasekaran, N. [2 ]
Neelakandeswari, N. [2 ]
Girija, E. K. [3 ]
Padiyan, D. Pathinettam [4 ]
机构
[1] Sri Ramakrishna Engn Coll, Dept Phys, Coimbatore 641022, Tamil Nadu, India
[2] Sri Ramakrishna Engn Coll, Dept Chem, Coimbatore 641022, Tamil Nadu, India
[3] Periyar Univ, Dept Phys, Salem 636011, Tamil Nadu, India
[4] Manonmaniam Sundaranar Univ, Dept Phys, Tirunelveli 627012, Tamil Nadu, India
关键词
Zinc oxide; aluminum; ethanol sensing; room temperature; response-recovery; ZINC-OXIDE; ZNO NANOPARTICLES; SENSORS;
D O I
10.1142/S0218625X15500948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc oxide (ZnO) and aluminum (Al) doped ZnO nanostructures with and without surfactant have been successfully prepared via sol-gel route. The effect of the surfactant glyoxalic acid and various concentration of Al on the structural property of ZnO was analyzed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The morphology of the samples was recorded using field emission scanning electron microscopy. The uniform distribution of ZnO nanostructures with hexagonal facets is facilitated by the surfactant and the grain growth is further inhibited by the increase in concentration of Al. The ethanol (0-300 ppm) sensing characteristics of the as-prepared samples were systematically investigated at room temperature. Surfactant-assisted ZnO/Al: ZnO nanostructures show higher sensitivity of 94% at room temperature than ZnO/Al: ZnO nanostructures without surfactant. Faster response at 68 s and recovery at 50 s is also achieved by the samples. The surfactant-assisted ZnO nanostructures exhibit sharp selective detection towards ethanol when compared to the samples without surfactant. The enhanced ethanol sensing property may be ascribed to the larger surface area which is due to uniform and smaller crystallite size of the surfactant-assisted sample.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Flexible ethanol sensors on glossy paper substrates operating at room temperature [J].
Arena, A. ;
Donato, N. ;
Saitta, G. ;
Bonavita, A. ;
Rizzo, G. ;
Neri, G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 145 (01) :488-494
[2]   Optical, electrical and sensing properties of In2O3 nanoparticles [J].
Ayeshamariam, A. ;
Bououdina, M. ;
Sanjeeviraja, C. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2013, 16 (03) :686-695
[3]   Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis [J].
Badadhe, Satish S. ;
Mulla, I. S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02) :943-948
[4]   Selective room temperature nanostructured thin film alcohol sensor as a virtual sensor array [J].
Beckers, N. A. ;
Taschuk, M. T. ;
Brett, M. J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 176 :1096-1102
[5]  
Behnajady MA, 2011, DIG J NANOMATER BIOS, V6, P467
[6]   Preparation and characterisation of Al doped ZnO nanopowders [J].
Chitra, M. ;
Uthayarani, K. ;
Rajasekaran, N. ;
Girija, E. K. .
BRNS, AICTE, DST, CSIR AND ISRO SPONSORED NATIONAL CONFERENCE ON SPINTRONIC MATERIALS: NANOSTRUCTURES AND DEVICES (SMND-2011), 2013, 49 :177-182
[7]   Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells [J].
Choopun, Supab ;
Tubtimtae, Auttasit ;
Santhaveesuk, Theerapong ;
Nilphai, Sanpet ;
Wongrat, Ekasiddh ;
Hongsith, Niyom .
APPLIED SURFACE SCIENCE, 2009, 256 (04) :998-1002
[8]  
Choudhyry M., 2011, J SENS TECHNOL, V1, P86
[9]   EFFECT OF CeO2 DOPING ON THE STRUCTURE, ELECTRICAL CONDUCTIVITY AND ETHANOL GAS SENSING PROPERTIES OF NANOCRYSTALLINE ZnO SENSORS [J].
El-Sayed, A. M. ;
Ismail, F. M. ;
Khder, M. H. ;
Hassouna, M. E. M. ;
Yakout, S. M. .
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2012, 5 (03) :606-623
[10]   Structural, optical and magnetic properties of nanoparticles of ZnO:Ni-DMS prepared by sol-gel method [J].
Elilarassi, R. ;
Chandrasekaran, G. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 123 (2-3) :450-455