Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future

被引:76
作者
Cheng, Gang [1 ,2 ]
Zielonka, Monika [1 ,2 ]
Dranka, Brian [6 ]
Kumar, Suresh N. [3 ]
Myers, Charles R. [4 ,5 ]
Bennett, Brian [7 ]
Garces, Alexander M. [7 ]
Machado, Luiz Gabriel Dias Duarte [7 ]
Thiebaut, David [8 ]
Ouari, Olivier [8 ]
Hardy, Micael [8 ]
Zielonka, Jacek [1 ,2 ,5 ]
Kalyanaraman, Balaraman [1 ,2 ,5 ]
机构
[1] Med Coll Wisconsin, Dept Biophys, 8701 Watertown Plank Rd, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Free Radical Res Ctr, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Dept Pathol, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Dept Pharmacol & Toxicol, Milwaukee, WI 53226 USA
[5] Med Coll Wisconsin, Canc Ctr, Milwaukee, WI 53226 USA
[6] Agilent Technol, Cell Anal Div, Santa Clara, CA 95051 USA
[7] Marquette Univ, Dept Phys, Milwaukee, WI 53233 USA
[8] Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13013 Marseille, France
基金
美国国家科学基金会;
关键词
bioenergetics; reactive oxygen species (ROS); electron paramagnetic resonance (EPR); peroxiredoxin; superoxide ion; low-temperature EPR; mitochondrial oxidants; radical scavengers; redox probes; thiol-specific antioxidant enzymes; ELECTRON-PARAMAGNETIC-RESONANCE; DIAGNOSTIC MARKER PRODUCTS; IMAGING HYDROGEN-PEROXIDE; OXIDATIVE STRESS; IN-VIVO; FLUORESCENT-PROBE; NADPH OXIDASE; INTRACELLULAR SUPEROXIDE; CATIONIC ANTIOXIDANTS; ROS GENERATION;
D O I
10.1074/jbc.RA118.003044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O) and forms a stable fluorescent product or reacts with O to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
引用
收藏
页码:10363 / 10380
页数:18
相关论文
共 117 条
[1]   In vivo imaging of reactive oxygen species in mouse brain by using [3H]Hydromethidine as a potential radical trapping radiotracer [J].
Abe, Kohji ;
Takai, Nozomi ;
Fukumoto, Kazumi ;
Imamoto, Natsumi ;
Tonomura, Misato ;
Ito, Miwa ;
Kanegawa, Naoki ;
Sakai, Katsunori ;
Morimoto, Kenji ;
Todoroki, Kenichiro ;
Inoue, Osamu .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014, 34 (12) :1907-1913
[2]   Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides [J].
Ahn, Hyo-Yang ;
Fairfull-Smith, Kathryn E. ;
Morrow, Benjamin J. ;
Lussini, Vanessa ;
Kim, Bosung ;
Bondar, Mykhailo V. ;
Bottle, Steven E. ;
Belfield, Kevin D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4721-4730
[3]   Mitochondrial ROS metabolism: 10 Years later [J].
Andreyev, A. Y. ;
Kushnareva, Y. E. ;
Murphy, A. N. ;
Starkov, A. A. .
BIOCHEMISTRY-MOSCOW, 2015, 80 (05) :517-531
[4]   Metabolite Profiling Reveals the Glutathione Biosynthetic Pathway as a Therapeutic Target in Triple-Negative Breast Cancer [J].
Beatty, Alexander ;
Fink, Lauren S. ;
Singh, Tanu ;
Strigun, Alexander ;
Peter, Erik ;
Ferrer, Christina M. ;
Nicolas, Emmanuelle ;
Cai, Kathy Q. ;
Moran, Timothy P. ;
Reginato, Mauricio J. ;
Rennefahrt, Ulrike ;
Peterson, Jeffrey R. .
MOLECULAR CANCER THERAPEUTICS, 2018, 17 (01) :264-275
[5]  
Beinert H, 1978, Methods Enzymol, V54, P133
[6]   SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production [J].
Bell, E. L. ;
Emerling, B. M. ;
Ricoult, S. J. H. ;
Guarente, L. .
ONCOGENE, 2011, 30 (26) :2986-2996
[7]   Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome [J].
Bennett, Brian ;
Helbling, Daniel ;
Meng, Hui ;
Jarzembowski, Jason ;
Geurts, Aron M. ;
Friederich, Marisa W. ;
Van Hove, Johan L. K. ;
Lawlor, Michael W. ;
Dimmock, David P. .
FREE RADICAL BIOLOGY AND MEDICINE, 2016, 92 :141-151
[8]   The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species:: A self-fulfilling prophesy? [J].
Bonini, MG ;
Rota, C ;
Tomasi, A ;
Mason, RP .
FREE RADICAL BIOLOGY AND MEDICINE, 2006, 40 (06) :968-975
[9]   Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling [J].
Brand, Martin D. .
FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 :14-31
[10]   Redox-dependent modulation of aconitase activity in intact mitochondria [J].
Bulteau, AL ;
Ikeda-Saito, M ;
Szweda, LI .
BIOCHEMISTRY, 2003, 42 (50) :14846-14855