Geodesic paths on triangular meshes

被引:16
作者
Martínez, D [1 ]
Velho, L [1 ]
Carvalho, PC [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
来源
XVII BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS | 2004年
关键词
D O I
10.1109/SIBGRA.2004.1352963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm to compute a geodesic path over a triangulated surface. Based in Sethian's Fast Marching Method and Polthier's Straightest Geodesics theory, we are able to generate an iterative process to obtain a good discrete geodesic approximation. It can handle convex and non-convex surfaces as well.
引用
收藏
页码:210 / 217
页数:8
相关论文
共 11 条
[1]  
Aleksandrov A.D., 1967, TRANSLATION MATH MON, V15
[2]  
CHEN JD, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P360, DOI 10.1145/98524.98601
[3]  
do Carmo P., 1976, Differential Geometry of Curves and Surfaces
[4]  
Floater M, 2002, TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, P287
[5]  
Kapoor S., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P770, DOI 10.1145/301250.301449
[6]   Computing geodesic paths on manifolds [J].
Kimmel, R ;
Sethian, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8431-8435
[7]   THE DISCRETE GEODESIC PROBLEM [J].
MITCHELL, JSB ;
MOUNT, DM ;
PAPADIMITRIOU, CH .
SIAM JOURNAL ON COMPUTING, 1987, 16 (04) :647-668
[8]  
Polthier K., 1999, DATA VISUALIZATION
[9]  
Polthier Konrad, 1998, Mathematical Visualization: Algorithms, Applications and Numerics, P135
[10]  
Sethian J. A., 1996, P NAT ACAD SCI, V93