Anderson-Mott transition in a disordered Hubbard chain with correlated hopping

被引:3
作者
Battista, Francesca [1 ,2 ]
Camjayi, Alberto [1 ,2 ]
Arrachea, Liliana [1 ,2 ,3 ]
机构
[1] Univ Buenos Aires, Dept Fis, FCEyN, Pabellon 1,Ciudad Univ, RA-1428 Caba, Argentina
[2] IFIBA, Pabellon 1,Ciudad Univ, RA-1428 Caba, Argentina
[3] UNSAM, ECyT, Int Ctr Adv Studies, Campus Miguelete,25 Mayo & Francia, RA-1650 Buenos Aires, DF, Argentina
关键词
METAL-INSULATOR-TRANSITION; NARROW ENERGY-BANDS; BOND-CHARGE INTERACTION; ELECTRON CORRELATIONS; INFINITE DIMENSIONS; OPTICAL LATTICES; FERMION SYSTEMS; PHASE-DIAGRAM; MODEL; LOCALIZATION;
D O I
10.1103/PhysRevB.96.045413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the ground-state phase diagram of the Anderson-Hubbard model with correlated hopping at half-filling in one dimension. The Hamiltonian has a local Coulomb repulsion U and a disorder potential with local energies randomly distributed in the interval (-W, + W) with equal probability, acting on the singly occupied sites. The hopping process which modifies the number of doubly occupied sites is forbidden. The hopping between nearest-neighbor singly occupied and empty sites or between singly occupied and doubly occupied sites has the same amplitude t. We identify three different phases as functions of the disorder amplitude W and Coulomb interaction strength U > 0. When U < 4t the system shows a metallic phase: (i) only when no disorder is present W = 0 or an Anderson-localized phase, (ii) when disorder is introduced W not equal 0. When U > 4t the Anderson-localized phase survives as long as disorder effects dominate on the interaction effects, otherwise a Mott-insulator phase (iii) arises. Phases (i) and (ii) are characterized by a finite density of doublons and a vanishing charge gap among the ground state and the excited states. Phase (iii) is characterized by the vanishing density of doublons and a finite gap for the charge excitations.
引用
收藏
页数:7
相关论文
共 83 条
[71]   Lattice of double wells for manipulating pairs of cold atoms [J].
Sebby-Strabley, J ;
Anderlini, M ;
Jessen, PS ;
Porto, JV .
PHYSICAL REVIEW A, 2006, 73 (03)
[72]   Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation [J].
Semmler, D. ;
Byczuk, K. ;
Hofstetter, W. .
PHYSICAL REVIEW B, 2011, 84 (11)
[73]   Interferometric Probes of Many-Body Localization [J].
Serbyn, M. ;
Knap, M. ;
Gopalakrishnan, S. ;
Papic, Z. ;
Yao, N. Y. ;
Laumann, C. R. ;
Abanin, D. A. ;
Lukin, M. D. ;
Demler, E. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[74]   BRINKMAN-RICE TRANSITION IN LAYERED PEROVSKITES [J].
SIMON, ME ;
ALIGIA, AA .
PHYSICAL REVIEW B, 1993, 48 (10) :7471-7477
[75]   Delocalizing effect of the Hubbard repulsion for electrons on a two-dimensional disordered lattice [J].
Srinivasan, B ;
Benenti, G ;
Shepelyansky, DL .
PHYSICAL REVIEW B, 2003, 67 (20)
[76]   HUBBARD-MODEL WITH NEAREST-NEIGHBOR AND BOND-CHARGE INTERACTION - EXACT GROUND-STATE SOLUTION IN A WIDE-RANGE OF PARAMETERS [J].
STRACK, R ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1993, 70 (17) :2637-2640
[77]  
Thouless D J., 1974, Phys. Rep, V13, P93, DOI [DOI 10.1016/0370-1573(74)90029-5, 10.1016/0370-1573(74)90029-5]
[78]  
Thouless D. J., 1976, J PHYS-PARIS, V37, pC4
[79]   THRESHOLD AND RESONANCE PHENOMENA IN ULTRACOLD GROUND-STATE COLLISIONS [J].
TIESINGA, E ;
VERHAAR, BJ ;
STOOF, HTC .
PHYSICAL REVIEW A, 1993, 47 (05) :4114-4122
[80]   ANDERSON-HUBBARD MODEL IN INFINITE DIMENSIONS [J].
ULMKE, M ;
JANIS, V ;
VOLLHARDT, D .
PHYSICAL REVIEW B, 1995, 51 (16) :10411-10426