Entropy formulation for fractal conservation laws

被引:66
作者
Alibaud, Nathael [1 ]
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
关键词
fractional Laplacian; fractal conservation laws; entropy formulation; vanishing viscosity method; error estimates;
D O I
10.1007/s00028-006-0253-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order lambda is an element of]0, 1]. This allows to show the existence and the uniqueness of a solution in the L-infinity framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for lambda = 2 and Droniou (2003) for lambda is an element of]1, 2].
引用
收藏
页码:145 / 175
页数:31
相关论文
共 14 条
[1]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[2]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[3]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[4]   Theory of cellular detonations in gases. Part 1. Stability limits at strong overdrive [J].
Clavin, P ;
He, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (06) :463-471
[5]   Theory of cellular detonations in gases. Part 2. Mach-stem formation at strong overdrive [J].
Clavin, P ;
Denet, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (07) :489-496
[6]   Global solution and smoothing effect for a non-local regularization of a hyperbolic equation [J].
Droniou, J ;
Gallouet, T ;
Vovelle, J .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (03) :499-521
[7]  
DRONIOU J, IN PRESS ARCH RATION
[8]  
DRONIOU J, 2003, ELECT J DIFFERENTIAL, P1
[10]   Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws [J].
Jourdain, B ;
Méléard, S ;
Woyczynski, WA .
BERNOULLI, 2005, 11 (04) :689-714