Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi

被引:93
作者
Lu, Kaiju [1 ]
Chauhan, Ankur [1 ]
Walter, Mario [1 ]
Tirunilai, Aditya Srinivasan [2 ]
Schneider, Mike [3 ]
Laplanche, Guillaume [3 ]
Freudenberger, Jens [4 ,5 ]
Kauffmann, Alexander [2 ]
Heilmaier, Martin [2 ]
Aktaa, Jarir [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat, Engelbert Arnold Str 4, D-76131 Karlsruhe, Germany
[3] Ruhr Univ Bochum, Inst Werkstoffe, D-44801 Bochum, Germany
[4] Leibniz Inst Solid State & Mat Res Dresden IFW Dr, Helmholtzstr 20, D-01069 Dresden, Germany
[5] Tech Univ Bergakad Freiberg, Inst Mat Sci, Gustav Zeuner Str 5, D-09599 Freiberg, Germany
关键词
High- and medium-entropy alloys; Fatigue; Transmission electron microscopy (TEM); Dislocation structure; HIGH-ENTROPY ALLOY; DISLOCATION SUBSTRUCTURE; GRAIN-SIZE; TEMPERATURE; EVOLUTION; BEHAVIOR; STRESS; CRCONI; DEFORMATION; ORIENTATION;
D O I
10.1016/j.scriptamat.2020.113667
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the low-cycle fatigue behavior of single-phase, face-centered cubic CoCrNi and CoCrFeMnNi at room temperature. Both alloys manifest cyclic hardening followed by softening and a near steady state until failure. CoCrNi exhibits higher strength, lower inelastic-strain, and longer lifetime than CoCrFeMnNi. For both alloys, microstructural investigations reveal no noticeable changes of texture, grain size and twin fraction. Nevertheless, CoCrNi exhibits planar dislocation structures, while CoCrFeMnNi shows well-defined wavy dislocation structures. This is due to CoCrNi lower stacking fault energy, which enhances planar slip and delays deformation localization leading to its superior fatigue resistance, compared to CoCrFeMnNi. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]   Mesoscale cyclic crystal plasticity with dislocation substructures [J].
Castelluccio, Gustavo M. ;
McDowell, David L. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 98 :1-26
[3]  
Coffin LF, 1954, T AM SOC MECH ENG, V76, P931, DOI DOI 10.1115/1.4015020
[4]  
Dieter G., 1986, MECH METALLURGY MAT, V3rd ed.
[5]   ANNIHILATION OF DISLOCATIONS DURING TENSILE AND CYCLIC DEFORMATION AND LIMITS OF DISLOCATION DENSITIES [J].
ESSMANN, U ;
MUGHRABI, H .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1979, 40 (06) :731-756
[6]   Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Thurston, Keli V. S. ;
Bei, Hongbin ;
Wu, Zhenggang ;
George, Easo P. ;
Ritchie, Robert O. .
NATURE COMMUNICATIONS, 2016, 7
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J].
Hemphill, M. A. ;
Yuan, T. ;
Wang, G. Y. ;
Yeh, J. W. ;
Tsai, C. W. ;
Chuang, A. ;
Liaw, P. K. .
ACTA MATERIALIA, 2012, 60 (16) :5723-5734
[9]  
Hull D., 2001, Introduction to Dislocations, V4, DOI DOI 10.1016/B978-075064681-9/50003-1
[10]   EFFECT OF APPLIED STRESS ON PARTIAL DISLOCATION SEPARATION AND DISLOCATION SUBSTRUCTURE IN AUSTENITIC STAINLESS-STEEL [J].
KESTENBACH, HJ .
PHILOSOPHICAL MAGAZINE, 1977, 36 (06) :1509-1515