On hermite interpolation

被引:16
作者
Shi, YG [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jath.2000.3459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
More general and stronger estimations of bounds for the fundamental functions of Hermite interpolation of higher order on an arbitrary system of nodes are given. Based on this result conditions for convergence of Hermite interpolation and Hermite-Fejer-type interpolation on an arbitrary system of nodes as well as Grunwald type theorems are essentially simplified and improved. (C) 2000 Academic Press.
引用
收藏
页码:49 / 86
页数:38
相关论文
共 15 条
[1]   On the uniform distribution of the roots of certain polynomials [J].
Erdos, P .
ANNALS OF MATHEMATICS, 1942, 43 :59-64
[2]   On interpolation II On the distribution of the fundamental points of Lagrange and Hermite interpolation [J].
Erdos, P ;
Turan, P .
ANNALS OF MATHEMATICS, 1938, 39 :703-724
[3]  
GRUNWALD G, 1942, ACTA MATH, V75, P219, DOI DOI 10.1007/BF02404108
[4]  
LORENTZ G, 1983, BIRKHOFF INTERPOLATI
[5]  
Riesz M., 1914, JAHRESBERICHT DTSCH, V23, P354
[6]   On the exact order of Lebesgue function type sums of hermite interpolation [J].
Shi, YG .
ACTA MATHEMATICA HUNGARICA, 1998, 78 (1-2) :93-98
[7]   Mean convergence of truncated hermite interpolation on an arbitrary system of nodes [J].
Shi, YG .
ACTA MATHEMATICA HUNGARICA, 1997, 76 (1-2) :45-58
[8]   A THEOREM OF GRUNWALD-TYPE FOR HERMITE-FEJER INTERPOLATION OF HIGHER-ORDER [J].
SHI, YG .
CONSTRUCTIVE APPROXIMATION, 1994, 10 (04) :439-450
[9]  
SHI YG, 1995, SCI CHINA SER A, V38, P1313
[10]   ON (0, 1, 2) INTERPOLATION IN UNIFORM METRIC [J].
SZABADOS, J ;
VARMA, AK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :975-979