Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors

被引:80
作者
Doyonnas, R
LaBarge, MA
Sacco, A
Charlton, C
Blau, HM
机构
[1] Stanford Univ, Sch Med, Baxter Lab Genet Pharmacol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Mol Pharmacol, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.0405361101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adult bone marrow-derived cells can participate in muscle regeneration after bone marrow transplantation. In recent studies a single hematopoietic stem cell (HSC) was shown to give rise to cells that not only reconstituted all of the lineages of the blood, but also contributed to mature muscle fibers. However, the relevant HSC derivative with this potential has not yet been definitively identified. Here we use fluorescence-activated cell sorter-based protocols to test distinct hematopoietic fractions and show that only fractions containing c-kit(+) immature myelomonocytic precursors are capable of contributing to muscle fibers after i.m. injection. Although these cells belong to the myeloid lineage, they do not include mature CD11b(+) myelomonocytic cells, such as macrophages. Of the four sources of mature macrophages tested that were derived either from monocytic culture, bone marrow, peripheral blood after granulocyte colony-stimulating factor mobilization, or injured muscle, none contributed to muscle. In addition, after transplantation of bone marrow isolated from CD11b-Cre-transgenic mice into the Cre-reporter strain (Z/EG), no GFP myofibers were detected, demonstrating that macrophages expressing CD11b do not fuse with myofibers. Irrespective of the underlying mechanisms, these data suggest that the HSC derivatives that integrate into regenerating muscle fibers exist in the pool of hematopoietic cells known as myelomonocytic progenitors.
引用
收藏
页码:13507 / 13512
页数:6
相关论文
共 43 条
[1]   Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice [J].
Bittner, RE ;
Schöfer, C ;
Weipoltshammer, K ;
Ivanova, S ;
Streubel, B ;
Hauser, E ;
Freilinger, M ;
Höger, H ;
Elbe-Bürger, A ;
Wachtler, F .
ANATOMY AND EMBRYOLOGY, 1999, 199 (05) :391-396
[2]   The evolving concept of a stem cell: Entity or function? [J].
Blau, HM ;
Brazelton, TR ;
Weimann, JM .
CELL, 2001, 105 (07) :829-841
[3]   Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells [J].
Brazelton, TR ;
Nystrom, M ;
Blau, HM .
DEVELOPMENTAL BIOLOGY, 2003, 262 (01) :64-74
[4]   Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners [J].
Camargo, FD ;
Finegold, M ;
Goodell, MA .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 113 (09) :1266-1270
[5]   Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates [J].
Camargo, FD ;
Green, R ;
Capetenaki, Y ;
Jackson, KA ;
Goodell, MA .
NATURE MEDICINE, 2003, 9 (12) :1520-1527
[6]   Fusion with the fused:: A new role for interleukin-4 in the building of muscle [J].
Chargé, S ;
Rudnicki, MA .
CELL, 2003, 113 (04) :422-423
[7]   Contribution of hematopoietic stem cells to skeletal muscle [J].
Corbel, SY ;
Lee, A ;
Yi, L ;
Duenas, J ;
Brazelton, TR ;
Blau, HM ;
Rossi, FMV .
NATURE MEDICINE, 2003, 9 (12) :1528-1532
[8]   Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches [J].
Dreyfus, PA ;
Chretien, F ;
Chazaud, B ;
Kirova, Y ;
Caramelle, P ;
Garcia, L ;
Butler-Browne, G ;
Gherardi, RK .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (03) :773-779
[9]  
DZIENNIS S, 1995, BLOOD, V85, P319
[10]   Bone-marrow transplantation - Failure to correct murine muscular dystrophy [J].
Ferrari, G ;
Stornaiuolo, A ;
Mavilio, F .
NATURE, 2001, 411 (6841) :1014-1015