Topological entropy for set valued maps

被引:24
作者
Lampart, Marek [1 ]
Raith, Peter [2 ]
机构
[1] Silesian Univ Opava, Math Inst, Opava 74601, Czech Republic
[2] Univ Vienna, Fak Math, A-1090 Vienna, Austria
关键词
Dynamical system; Induced set valued map; Topological entropy; Interval homeomorphism; Circle homeomorphism; DISCRETE-SYSTEMS; CHAOS; HYPERSPACE;
D O I
10.1016/j.na.2010.04.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Any continuous map T on a compact metric space X induces in a natural way a continuous map (T) over bar on the space K(X) of all non-empty compact subsets of X. Let T be a homeomorphism on the interval or on the circle. It is proved that the topological entropy of the induced set valued map (T) over bar is zero or infinity. Moreover, the topological entropy of (T) over bar vertical bar(C(X)) is zero, where C(X) denotes the space of all non-empty compact and connected subsets of X. For general continuous maps on compact metric spaces these results are not valid. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1533 / 1537
页数:5
相关论文
共 14 条
[1]   Chaos for induced hyperspace maps [J].
Banks, J .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :681-685
[2]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[3]   On chaotic set-valued discrete dynamical systems [J].
Fedeli, A .
CHAOS SOLITONS & FRACTALS, 2005, 23 (04) :1381-1384
[4]   Chaos on hyperspaces [J].
Garcia Guirao, Juan Luis ;
Kwietniak, Dominik ;
Lampart, Marek ;
Oprocha, Piotr ;
Peris, Alfredo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :1-8
[5]   On mixing property in set-valued discrete systems [J].
Gu, RB ;
Guo, WJ .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :747-754
[6]   Kato's chaos in set-valued discrete systems [J].
Gu, Rongbao .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :765-771
[7]   Topological entropy and chaos for maps induced on hyperspaces [J].
Kwietniak, Dominik ;
Oprocha, Piotr .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :76-86
[8]   Chaos in hyperspace system [J].
Ma, Xianfeng ;
Hou, Bingzhe ;
Liao, Gongfu .
CHAOS SOLITONS & FRACTALS, 2009, 40 (02) :653-660
[9]   Set-valued discrete chaos [J].
Peris, A .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :19-23
[10]   Robinson's chaos in set-valued discrete systems [J].
Román-Flores, H ;
Chalco-Cano, Y .
CHAOS SOLITONS & FRACTALS, 2005, 25 (01) :33-42