Stabilization by Local Projection for Convection-Diffusion and Incompressible Flow Problems

被引:43
作者
Ganesan, Sashikumaar [1 ]
Tobiska, Lutz [1 ]
机构
[1] Otto Von Guericke Univ, Dept Math, Inst Anal & Computat Math, D-39016 Magdeburg, Germany
关键词
Convection-diffusion equations; Incompressible flows; Local projection stabilization; Finite elements; Boundary layers; FINITE-ELEMENT METHODS; PETROV-GALERKIN FORMULATIONS; BUBBLES; ADVECTION;
D O I
10.1007/s10915-008-9259-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a survey on recent developments of stabilization methods based on local projection type. The considered class of problems covers scalar convection-diffusion equations, the Stokes problem and the linearized Navier-Stokes equations. A new link of local projection to the streamline diffusion method is shown. Numerical tests for different type of boundary layers arising in convection-diffusion problems illustrate the stabilizing properties of the method.
引用
收藏
页码:326 / 342
页数:17
相关论文
共 29 条
[21]   A unified convergence analysis for local projection stabilisations applied to the oseen problem [J].
Matthies, Gunar ;
Skrzypacz, Piotr ;
Tobiska, Lutz .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (04) :713-742
[22]  
OHMORI K, 1984, RAIRO-ANAL NUMER-NUM, V18, P309
[23]  
Roos H., 1996, NUMERICAL METHODS SI
[24]  
SCHIEWECK F, 1989, RAIRO-MATH MODEL NUM, V23, P627
[25]  
SCHIEWECK F, 1996, NUMER METH PART D E, V12, P107
[26]   AN UPWIND FINITE-ELEMENT SCHEME FOR HIGH-REYNOLDS-NUMBER FLOWS [J].
TABATA, M ;
FUJIMA, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1991, 12 (04) :305-322
[27]  
TABATA M., 1977, Mem. Numer. Math., V4, P47
[28]   Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations [J].
Tobiska, L ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :107-127
[29]   On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations [J].
Tobiska, Lutz .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) :831-837