The Kepler problem: a concealed vector

被引:2
作者
Vivarelli, Maria Dina [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
Kepler problem; Conic sections; Regularization; General mechanics;
D O I
10.1007/s11012-009-9255-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
By reconsidering anew our unitary S-description of the family of Kepler conic sections, we show how the plane sum vector S unravels at the core the existence of a constant vector N, which not only discloses in a natural way the cone structure in R (3) which defines the Kepler conic sections, but also enlightens the peculiar genesis of the map devised by Levi-Civita for the regularization of the Kepler problem at collision.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 8 条
[1]   A complete closed form vectorial solution to the Kepler problem [J].
Condurache, Daniel ;
Martinusi, Vladimir .
MECCANICA, 2007, 42 (05) :465-476
[2]   LINEARIZATION - LAPLACE VS STIEFEL [J].
DEPRIT, A ;
ELIPE, A ;
FERRER, S .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (02) :151-201
[3]  
LEVICIVITA T, 1973, OPERE MATEMATICHE, V6, P111
[4]  
Stiefel E.L., 1971, Linear and Regular Celestial Mechanics, DOI DOI 10.1007/978-3-642-65027-7
[5]  
Vivarelli M.D, 2005, AMAZING S CODE CONIC
[6]   A Julia set for the Kepler problem [J].
Vivarelli, Maria Dina .
MECCANICA, 2007, 42 (04) :365-374
[7]   THE KEPLER-PROBLEM - A UNIFYING VIEW [J].
VIVARELLI, MD .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (03) :291-305
[8]   The sum vector S and the fictitious time s in the Kepler problem [J].
Vivarelli, MD .
MECCANICA, 2000, 35 (01) :55-67