Exact solutions for the Einstein-Gauss-Bonnet theory in five dimensions: Black holes, wormholes, and spacetime horns

被引:112
作者
Dotti, Gustavo
Oliva, Julio
Troncoso, Ricardo
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
[2] Univ Concepcion, Dept Fis, Concepcion, Chile
[3] Ctr Estudios Cient, Valdivia, Chile
关键词
D O I
10.1103/PhysRevD.76.064038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An exhaustive classification of a certain class of static solutions for the five-dimensional Einstein-Gauss-Bonnet theory in vacuum is presented. The class of metrics under consideration is such that the spacelike section is a warped product of the real line with a nontrivial base manifold. It is shown that for generic values of the coupling constants the base manifold must be necessarily of constant curvature, and the solution reduces to the topological extension of the Boulware-Deser metric. It is also shown that the base manifold admits a wider class of geometries for the special case when the Gauss-Bonnet coupling is properly tuned in terms of the cosmological and Newton constants. This freedom in the metric at the boundary, which determines the base manifold, allows the existence of three main branches of geometries in the bulk. For the negative cosmological constant, if the boundary metric is such that the base manifold is arbitrary, but fixed, the solution describes black holes whose horizon geometry inherits the metric of the base manifold. If the base manifold possesses a negative constant Ricci scalar, two different kinds of wormholes in vacuum are obtained. For base manifolds with vanishing Ricci scalar, a different class of solutions appears resembling "spacetime horns." There is also a special case for which, if the base manifold is of constant curvature, due to a certain class of degeneration of the field equations, the metric admits an arbitrary redshift function. For wormholes and spacetime horns, there are regions for which the gravitational and centrifugal forces point towards the same direction. All of these solutions have finite Euclidean action, which reduces to the free energy in the case of black holes, and vanishes in the other cases. The mass is also obtained from a surface integral.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[2]   Exact solutions in five-dimensional axi-dilaton gravity with Euler-Poincare term [J].
Aliev, A. N. ;
Cebeci, H. ;
Dereli, T. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (13) :3425-3436
[3]  
ARKANIHAMED N, ARXIV07052768
[4]  
Aros R, 2002, J HIGH ENERGY PHYS
[5]   Black holes with topologically nontrivial AdS asymptotics [J].
Aros, R ;
Troncoso, R ;
Zanelli, J .
PHYSICAL REVIEW D, 2001, 63 (08)
[6]  
AROS R, ARXIV07051162
[7]   DIMENSIONALLY CONTINUED BLACK-HOLES [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1994, 49 (02) :975-986
[8]   Gravitational instability of static spherically symmetric Einstein-Gauss-Bonnet black holes in five and six dimensions [J].
Beroiz, Martin ;
Dotti, Gustavo ;
Gleiser, Reinaldo J. .
PHYSICAL REVIEW D, 2007, 76 (02)
[9]   LORENTZIAN WORMHOLES IN EINSTEIN-GAUSS-BONNET THEORY [J].
BHAWAL, B ;
KAR, S .
PHYSICAL REVIEW D, 1992, 46 (06) :2464-2468
[10]   Topological black holes in anti-de Sitter space [J].
Birmingham, D .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1197-1205