Photovoltaic defect classification through thermal infrared imaging using a machine learning approach

被引:104
作者
Dunderdale, Christopher [1 ]
Brettenny, Warren [1 ]
Clohessy, Chantelle [1 ]
van Dyk, E. Ernest [2 ]
机构
[1] Nelson Mandela Univ, Dept Stat, Port Elizabeth, South Africa
[2] Nelson Mandela Univ, Dept Phys, Port Elizabeth, South Africa
来源
PROGRESS IN PHOTOVOLTAICS | 2020年 / 28卷 / 03期
基金
新加坡国家研究基金会;
关键词
deep learning; defect classification; defect detection; infrared thermography; machine learning; photovoltaic; random forest; SIFT; support vector machine; DIAGNOSIS; MODULES; FAULTS;
D O I
10.1002/pip.3191
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study examines a deep learning and feature-based approach for the purpose of detecting and classifying defective photovoltaic modules using thermal infrared images in a South African setting. The VGG-16 and MobileNet models are shown to provide good performance for the classification of defects. The scale invariant feature transform (SIFT) descriptor, combined with a random forest classifier, is used to identify defective photovoltaic modules. The implementation of this approach has potential for cost reduction in defect classification over current methods.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 30 条
[1]  
[Anonymous], COMMUN RES REP
[2]  
[Anonymous], IEEE COMP SOC C COMP
[3]  
[Anonymous], REN EN SOL EN
[4]  
[Anonymous], ENERGY SWITCH PROVEN
[5]  
[Anonymous], IMAGE CLASSIFICATION
[6]  
[Anonymous], COMP SOC C COMP VIS
[7]  
[Anonymous], 35 INT TEL EN C
[8]  
[Anonymous], COMMUN RES REP
[9]  
[Anonymous], ANN REP
[10]  
[Anonymous], THERM IM CAM FAST RE