Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins

被引:68
作者
Jinawath, A [1 ]
Miyake, S [1 ]
Yanagisawa, Y [1 ]
Akiyama, Y [1 ]
Yuasa, Y [1 ]
机构
[1] Tokyo Med & Dent Univ, Grad Sch Med & Dent, Dept Mol Oncol, Bunkyo Ku, Tokyo 1138519, Japan
关键词
DNA methyltransferase (DNMT); gene regulation; mithramycin A; specificity protein 1 (Sp1); Sp3;
D O I
10.1042/BJ20040684
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The DNMT3A (DNA methyltransferase 3A) and DNMT3B genes encode putative de novo methyltransferases and show complex transcriptional regulation in the presence of three and two different promoters respectively. All promoters of DNMT3A and DNMT3B lack typical TATA sequences adjacent to their transcription start sites and contain several Sp1-binding sites. The importance of these Sp1-binding sites was demonstrated by using a GC-rich DNA-binding protein inhibitor, mithramycin A, i.e. on the basis of decrease in the promoter activities and mRNA expression levels of DNMT3A and DNMT3B. Overexpression of Sp1 and Sp3 upregulated the promoter activities of these two genes. The physical binding of Sp1 and Sp3 to DNMT3A and DNMT3B promoters was confirmed by a gel shift assay. Interestingly, Sp3 overexpression in HEK-293T cells (human embryonic kidney 293T cells) resulted in 3.3- and 4.0-fold increase in DNMT3A and DNMT3B mRNA expression levels respectively by quantitative reverse transcriptasePCR, whereas Sp1 overexpression did not. Furthermore, an antisense oligonucleotide to Sp3 significantly decreased the mRNA levels of DNMT3A and DNMT3B. These results indicate the functional importance of Sp proteins, particularly Sp;, in the regulation of DNMT3A and DNMT3B gene expression.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 28 条
[1]   Sp3 is a transcriptional repressor of transforming growth factor-β receptors [J].
Ammanamanchi, S ;
Brattain, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (05) :3348-3352
[2]   CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene [J].
Bai, YQ ;
Miyake, S ;
Iwai, T ;
Yuasa, Y .
ONCOGENE, 2003, 22 (39) :7942-7949
[3]   Role of DNA 5-methylcytosine transferase in cell transformation by fos [J].
Bakin, AV ;
Curran, T .
SCIENCE, 1999, 283 (5400) :387-390
[4]   DNA hypermethylation in tumorigenesis - epigenetics joins genetics [J].
Baylin, SB ;
Herman, JG .
TRENDS IN GENETICS, 2000, 16 (04) :168-174
[5]   An essential role for DNA methyltransferase DNMT3B in cancer cell survival [J].
Beaulieu, N ;
Morin, S ;
Chute, IC ;
Robert, MF ;
Nguyen, H ;
MacLeod, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28176-28181
[6]   Regulation of the activity of Sp1-related transcription factors [J].
Bouwman, P ;
Philipsen, S .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2002, 195 (1-2) :27-38
[7]  
Chatterjee A, 2001, RRD PURE APPL ANALYT, V3, P49
[8]   A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation [J].
Chen, TP ;
Ueda, Y ;
Xie, SP ;
Li, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38746-38754
[9]   Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1 [J].
Christensen, MA ;
Zhou, WH ;
Qing, H ;
Lehman, A ;
Philipsen, S ;
Song, WH .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (02) :865-874
[10]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898