Sobolev inequality with non-uniformly degenerating gradient

被引:1
作者
Mamedov, Farman [1 ]
Monsurro, Sara [2 ]
机构
[1] Natl Acad Sci, Inst Math & Mech, B Vahabzade Str 9, AZ-1141 Baku, Azerbaijan
[2] Univ Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
Sobolev's inequality; homogeneous space; non-uniformly degenerating gradient; POINCARE INEQUALITIES; WEIGHTED SOBOLEV; VECTOR-FIELDS; ELLIPTIC-EQUATIONS; LOCAL REGULARITY; SPACES; GRUSHIN; THEOREMS; OPERATOR;
D O I
10.14232/ejqtde.2022.1.24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the following weighted Sobolev inequality in a bounded domain Omega subset of R-n, n >= 1, of a homogeneous space (R-n,p,wdx), under suitable compatibility conditions on the positive weight functions (v, w, w(1), w(2), ...,w(n)) and on the quasi-metric rho, (integral(Omega) vertical bar f vertical bar(q)v wdz)(1/q) <= C Sigma(N)(i=1) (integral(Omega)vertical bar f(zi)vertical bar(p)w(i)M(s)w dz)(1/p), f is an element of Lip(0)((Omega) over bar) where q >= p > 1 and Ms denotes the strong maximal operator. Some corollaries on non-uniformly degenerating gradient inequalities are derived.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 40 条
[1]   WEIGHTED NORM INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON SPACES OF HOMOGENEOUS TYPE [J].
AIMAR, H ;
MACIAS, RA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (02) :213-216
[2]   ELLIPTIC AND PARABOLIC BMO AND HARNACK INEQUALITY [J].
AIMAR, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (01) :265-276
[3]  
Amanov RA, 2008, MATH NOTES+, V83, P3, DOI [10.4213/mzm4334, 10.1134/S000143460801001X]
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
Campos-Ortega Jose A., 1985, EMBRYONIC DEV DROSOP
[6]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[7]   DE GIORGI-MOSER THEOREM FOR A CLASS OF DEGENERATE NON-UNIFORMLY ELLIPTIC-EQUATIONS [J].
CHIARENZA, F ;
RUSTICHINI, A ;
SERAPIONI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :635-662
[8]  
Coifman R., 1971, LECT NOTES MATH, V242
[9]   Hardy inequalities related to Grushin type operators [J].
D'Ambrosio, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :725-734
[10]   Nonlinear Liouville theorems for Grushin and Tricomi operators [J].
D'Ambrosio, L ;
Lucente, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :511-541