Asymptotic behavior for the Navier-Stokes equations with nonzero external forces

被引:2
作者
Bae, Hyeong-Ohk [1 ]
Brandolese, Lorenzo [2 ]
Jin, Bum Ja [3 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
[3] Mokpo Nat Univ, Dept Math, Mokpo, South Korea
关键词
Heat solution; Stokes equations; Navier-Stokes; Temporal-spatial decay; Upper bound; Lower bound; Weights; External force; WEAK SOLUTIONS; EXTERIOR DOMAINS; L2; DECAY; SPATIAL DECAYS; SPACES; RN;
D O I
10.1016/j.na.2008.10.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the asymptotic behavior for the Stokes solutions, with external forces first. We found that if there are external forces, then the energy decays slowly even if the forces decay quickly. Then, we also obtain the asymptotic behavior in the temporal-spatial direction for weak solutions of the Navier-Stokes equations. We also provide a simple example of external forces which shows that the Stokes solution does not decay quickly. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E292 / E302
页数:11
相关论文
共 24 条
[1]   Temporal and spatial decays for the Navier-Stokes equations [J].
Bae, HO ;
Jin, BJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :461-477
[2]   Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations [J].
Bae, HO ;
Jin, BJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :365-391
[3]   Decay rate for the incompressible flows in half spaces [J].
Bae, HO ;
Choe, HJ .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) :799-816
[4]  
BAE HO, WEIGHTED L2 DECAY NA
[5]   Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains [J].
Bae, Hyeong-Ohk ;
Jin, Bum Ja .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) :547-567
[6]   Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains [J].
Bae, Hyeong-Ohk ;
Jin, Bum Ja .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (02) :508-529
[7]   L2 DECAY FOR THE NAVIER-STOKES FLOW IN HALFSPACES [J].
BORCHERS, W ;
MIYAKAWA, T .
MATHEMATISCHE ANNALEN, 1988, 282 (01) :139-155
[8]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[9]   Global estimates in weighted spaces of weak solutions of the Navier-Stokes equations in exterior domains [J].
Farwig, R ;
Sohr, H .
ARCHIV DER MATHEMATIK, 1996, 67 (04) :319-330
[10]  
Farwig R., 1995, APPL ANAL, V58, P157