GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments

被引:12
作者
Wang, Michael [1 ]
Yang, Tingjun [1 ]
Flechas, Maria Acosta [1 ]
Harris, Philip [2 ]
Hawks, Benjamin [1 ]
Holzman, Burt [1 ]
Knoepfel, Kyle [1 ]
Krupa, Jeffrey [2 ]
Pedro, Kevin [1 ]
Tran, Nhan [1 ,3 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Northwestern Univ, Evanston, IL USA
来源
FRONTIERS IN BIG DATA | 2021年 / 3卷
基金
美国国家科学基金会;
关键词
machine learning; heterogeneous (CPU plus GPU) computing; GPU (graphics processing unit); particle physics; cloud computing (SaaS);
D O I
10.3389/fdata.2020.604083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Allen: A High-Level Trigger on GPUs for LHCb
    Aaij R.
    Albrecht J.
    Belous M.
    Billoir P.
    Boettcher T.
    Brea Rodríguez A.
    vom Bruch D.
    Cámpora Pérez D.H.
    Casais Vidal A.
    Craik D.C.
    Fernandez Declara P.
    Funke L.
    Gligorov V.V.
    Jashal B.
    Kazeev N.
    Martínez Santos D.
    Pisani F.
    Pliushchenko D.
    Popov S.
    Quagliani R.
    Rangel M.
    Reiss F.
    Sánchez Mayordomo C.
    Schwemmer R.
    Sokoloff M.
    Stevens H.
    Ustyuzhanin A.
    Vilasís Cardona X.
    Williams M.
    [J]. Computing and Software for Big Science, 2020, 4 (1)
  • [2] First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
    Abi, B.
    Abud, A. Abed
    Acciarri, R.
    Acero, M. A.
    Adamov, G.
    Adamowski, M.
    Adams, D.
    Adrien, P.
    Adinolfi, M.
    Ahmad, Z.
    Ahmed, J.
    Alion, T.
    Monsalve, S. Alonso
    Alt, C.
    Anderson, J.
    Andreopoulos, C.
    Andrews, M. P.
    Andrianala, F.
    Andringa, S.
    Ankowski, A.
    Antonova, M.
    Antusch, S.
    Aranda-Fernandez, A.
    Ariga, A.
    Arnold, L. O.
    Arroyave, M. A.
    Asaadi, J.
    Aurisano, A.
    Aushev, V
    Autiero, D.
    Azfar, F.
    Back, H.
    Back, J. J.
    Backhouse, C.
    Baesso, P.
    Bagby, L.
    Bajou, R.
    Balasubramanian, S.
    Baldi, P.
    Bambah, B.
    Barao, F.
    Barenboim, G.
    Barker, G. J.
    Barkhouse, W.
    Barnes, C.
    Barr, G.
    Monarca, J. Barranco
    Barros, N.
    Barrow, J. L.
    Bashyal, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (12):
  • [3] Volume I. Introduction to DUNE
    Abi, B.
    Acciarri, R.
    Acero, M. A.
    Adamov, G.
    Adams, D.
    Adinolfi, M.
    Ahmad, Z.
    Ahmed, J.
    Alion, T.
    Monsalve, S. Alonso
    Alt, C.
    Anderson, J.
    Andreopoulos, C.
    Andrews, M.
    Andrianala, F.
    Andringa, S.
    Ankowski, A.
    Antonova, M.
    Antusch, S.
    Aranda-Fernandez, A.
    Ariga, A.
    Arnold, L. O.
    Arroyave, M. A.
    Asaadi, J.
    Aurisano, A.
    Aushev, V.
    Autiero, D.
    Azfar, F.
    Back, H.
    Back, J. J.
    Backhouse, C.
    Baesso, P.
    Bayby, L.
    Bajou, R.
    Balasubramanian, S.
    Baldi, P.
    Bambah, B.
    Barao, F.
    Barenhoim, G.
    Barker, G.
    Barkhouse, W.
    Barnes, C.
    Barr, G.
    Monarca, J. Barranco
    Barros, N.
    Barrow, J. L.
    Bashyal, A.
    Basque, V.
    Bay, F.
    Alba, J. Bazo
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (08):
  • [4] Abi B., 2020, ARXIV200615052
  • [5] Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
    Acciarri, R.
    Adams, C.
    An, R.
    Asaadi, J.
    Auger, M.
    Bagby, L.
    Baller, B.
    Barr, G.
    Bass, M.
    Bay, F.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Bugel, L.
    Camilleri, L.
    Caratelli, D.
    Carls, B.
    Fernandez, R. Castillo
    Cavanna, F.
    Chen, H.
    Church, E.
    Cianci, D.
    Collin, G. H.
    Conrad, J. M.
    Convery, M.
    Crespo-Anadon, J. I.
    Del Tutto, M.
    Devitt, D.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Sanchez, L. Escudero
    Esquivel, J.
    Fleming, B. T.
    Foreman, W.
    Furmanski, A. P.
    Garvey, G. T.
    Genty, V.
    Goeldi, D.
    Gollapinni, S.
    Graf, N.
    Gramellini, E.
    Greenlee, H.
    Grosso, R.
    Guenette, R.
    Hackenburg, A.
    Hamilton, P.
    Hen, O.
    Hewes, J.
    Hill, C.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [6] Design and construction of the MicroBooNE detector
    Acciarri, R.
    Adams, C.
    An, R.
    Aparicio, A.
    Aponte, S.
    Asaadi, J.
    Auger, M.
    Ayoub, N.
    Bagby, L.
    Baller, B.
    Barger, R.
    Barr, G.
    Bass, M.
    Bay, F.
    Biery, K.
    Bishai, M.
    Blake, A.
    Bocean, V.
    Boehnlein, D.
    Bogert, V. D.
    Bolton, T.
    Bugel, L.
    Callahan, C.
    Camilleri, L.
    Caratelli, D.
    Carls, B.
    Castillo Fernandez, R.
    Cavanna, F.
    Chappa, S.
    Chen, H.
    Chen, K.
    Chi, C-Y
    Chiu, C. S.
    Church, E.
    Cianci, D.
    Collin, G. H.
    Conrad, J. M.
    Convery, M.
    Cornele, J.
    Cowan, P.
    Crespo-Anadon, J. I.
    Crutcher, G.
    Darve, C.
    Davis, R.
    Del Tutto, M.
    Devitt, D.
    Duffin, S.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [7] Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber
    Adams, C.
    Alrashed, M.
    An, R.
    Anthony, J.
    Asaadi, J.
    Ashkenazi, A.
    Auger, M.
    Balasubramanian, S.
    Baller, B.
    Barnes, C.
    Barr, G.
    Bass, M.
    Bay, F.
    Bhat, A.
    Bhattacharya, K.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Camilleri, L.
    Caratelli, D.
    Terrazas, I. Caro
    Carr, R.
    Fernandez, R. Castillo
    Cavanna, F.
    Cerati, G.
    Chen, Y.
    Church, E.
    Cianci, D.
    Cohen, E. O.
    Collin, G. H.
    Conrad, J. M.
    Convery, M.
    Cooper-Troendle, L.
    Crespo-Anadon, J., I
    Del Tutto, M.
    Devitt, D.
    Diaz, A.
    Duffy, K.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Sanchez, L. Escudero
    Esquivel, J.
    Evans, J. J.
    Fadeeva, A. A.
    Fitzpatrick, R. S.
    Fleming, B. T.
    Franco, D.
    Furmanski, A. P.
    Garcia-Gamez, D.
    [J]. PHYSICAL REVIEW D, 2019, 99 (09)
  • [8] [Anonymous], 2017, SUBMANIFOLD SPARSE C
  • [9] A convolutional neural network neutrino event classifier
    Aurisano, A.
    Radovic, A.
    Rocco, D.
    Himmel, A.
    Messier, M. D.
    Niner, E.
    Pawloski, G.
    Psihas, F.
    Sousa, A.
    Vahle, P.
    [J]. JOURNAL OF INSTRUMENTATION, 2016, 11
  • [10] Ayres D. S., 2007, The NOvA Technical Design Report, DOI [10.2172/935497, DOI 10.2172/935497]