Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes

被引:34
作者
Bai, Lihua [1 ]
Guo, Junyi
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Dividends; Quasi-variational inequality; Optimal strategy; Stochastic impulse control; Exponential claim distribution; OPTIMIZATION; POLICIES; COMPANY;
D O I
10.1080/03461230802591098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study optimal dividend problem in the classical risk model. Transaction costs and taxes are required when dividends occur. The problem is formulated as a stochastic impulse control problem. By solving the corresponding quasi-variational inequality, we obtain the analytical solutions of the optimal return function and the optimal dividend strategy when claims are exponentially distributed. We also find a formula for the expected time between dividends. The results show that, as the dividend tax rate decreases, it is optimal for the shareholders to receive smaller but more frequent dividend payments.
引用
收藏
页码:36 / 55
页数:20
相关论文
共 18 条
[1]   Controlled diffusion models for optimal dividend pay-out [J].
Asmussen, S ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) :1-15
[2]  
Asmussen S.R., 2000, Financ. Stoch, V4, P299, DOI [10.1007/s007800050075, DOI 10.1007/S007800050075]
[3]   On the optimal dividend problem for a spectrally negative Levy process [J].
Avram, Florin ;
Palmowski, Zbigniew ;
Pistorius, Martijn R. .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (01) :156-180
[4]   Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model [J].
Azcue, P ;
Muler, N .
MATHEMATICAL FINANCE, 2005, 15 (02) :261-308
[5]   Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm [J].
Cadenillas, A ;
Choulli, T ;
Taksar, M ;
Zhang, L .
MATHEMATICAL FINANCE, 2006, 16 (01) :181-202
[6]   Optimal dividend policy with mean-reverting cash reservoir [J].
Cadenillas, Abel ;
Sarkar, Sudipto ;
Zapatero, Fernando .
MATHEMATICAL FINANCE, 2007, 17 (01) :81-109
[7]   A diffusion model for optimal dividend distribution for a company with constraints on risk control [J].
Choulli, T ;
Taksar, M ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (06) :1946-1979
[8]  
Gerber H., 2004, N AM ACTUAR J, V8, P1
[9]  
Gerber H.U., 1969, Bulletin de l'Association Suisse des Actuaires, V1969, P185
[10]   ON OPTIMAL DIVIDEND STRATEGIES IN THE COMPOUND POISSON MODEL [J].
Gerber, Hans ;
Shiu, Elias .
NORTH AMERICAN ACTUARIAL JOURNAL, 2006, 10 (02) :76-93