Influence of a liquid surface on the NOx production of a cold atmospheric pressure plasma jet

被引:22
|
作者
Hansen, Luka [1 ]
Schmidt-Bleker, Ansgar [2 ]
Bansemer, Robert [2 ]
Kersten, Holger [1 ]
Weltmann, Klaus-Dieter [2 ]
Reuter, Stephan [2 ,3 ]
机构
[1] Univ Kiel, Inst Expt & Appl Phys, Leibnizstr 11-19, D-24098 Kiel, Germany
[2] INP Greifswald eV, Felix Hausdorff Str 2, D-17489 Greifswald, Germany
[3] Princeton Univ, E Quad, Olden St, Princeton, NJ 08542 USA
关键词
cold atmospheric pressure plasma; plasma jet; plasma-liquid interaction; Fourier transform infrared spectroscopy; QUENCHING CROSS-SECTIONS; PHOTOCHEMICAL DATA; ENERGY-TRANSFER; O-X; CHEMISTRY; ARGON;
D O I
10.1088/1361-6463/aad6f0
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work a cold atmospheric pressure plasma jet was mounted above a distilled water reservoir to study the influence of a water surface on reactive oxygen and nitrogen species (RONS) generation. The RONS, namely O-3 and NO2, were measured by multi-pass cell Fourier transform infrared absorption spectroscopy in the far-field of the jet. A shielding gas device was used to control the ambient environment of the effluent. The liquid surface has nearly no influence on the RONS dynamics as a function of shielding gas composition. It was found, however, that the interaction with the liquid surface increases the density of NOx by a factor of 2-3 due to local increase in H2O concentration through evaporation of water from the liquid surface. In contrast to the case of ambient humidity increase, this locally higher H2O density distinctly influences the ratio of water to oxygen and nitrogen which results in a higher generation of OH molecules.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet
    M. Bakhshzadmahmoudi
    S. Jamali
    E. Ahmadi
    Colloid and Polymer Science, 2022, 300 : 103 - 110
  • [2] Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet
    Bakhshzadmahmoudi, M.
    Jamali, S.
    Ahmadi, E.
    COLLOID AND POLYMER SCIENCE, 2022, 300 (02) : 103 - 110
  • [3] Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet
    Cheng, Cheng
    Zhang Liye
    Zhan, Ru-Juan
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (24): : 6659 - 6665
  • [4] Cold arc-plasma jet under atmospheric pressure for surface modification
    Toshifuji, J
    Katsumata, T
    Takikawa, H
    Sakakibara, T
    Shimizu, I
    SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3): : 302 - 306
  • [5] Influence of Cold Plasma Atmospheric Jet on Surface Integrin Expression of Living Cells
    Shashurin, Alexey
    Stepp, Mary Ann
    Hawley, Teresa S.
    Pal-Ghosh, Sonali
    Brieda, Lubos
    Bronnikov, Svetlana
    Jurjus, Rosalyn A.
    Keidar, Michael
    PLASMA PROCESSES AND POLYMERS, 2010, 7 (3-4) : 294 - 300
  • [6] Induced Liquid Phase Flow by RF Ar Cold Atmospheric Pressure Plasma Jet
    van Rens, Jasper F. M.
    Schoof, Jan T.
    Ummelen, Fanny C.
    van Vugt, Daan C.
    Bruggeman, Peter J.
    van Veldhuizen, E. M.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2622 - 2623
  • [7] NO production in an RF plasma jet at atmospheric pressure
    van Gessel, A. F. H.
    Alards, K. M. J.
    Bruggeman, P. J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (26)
  • [8] Controlling the NO production of an atmospheric pressure plasma jet
    Pipa, A. V.
    Reuter, S.
    Foest, R.
    Weltmann, K-D
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (08)
  • [9] Bullet-to-streamer transition on the liquid surface of a plasma jet in atmospheric pressure
    Yoon, S. -Y.
    Kim, G. -H.
    Kim, S. -J.
    Bae, B.
    Kim, N. -K.
    Lee, H.
    Bae, N.
    Ryu, S.
    Yoo, S. J.
    Kim, S. B.
    PHYSICS OF PLASMAS, 2017, 24 (01)
  • [10] Fe Nanoparticle Production by an Atmospheric Cold Plasma Jet
    Zhang Yu-Tao
    Guo Ying
    Wang Da-Wang
    Feng Yan
    Ma Teng-Cai
    CHINESE PHYSICS LETTERS, 2010, 27 (06)